論文の概要: DeepQuarantine for Suspicious Mail
- arxiv url: http://arxiv.org/abs/2001.04168v1
- Date: Mon, 13 Jan 2020 11:32:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-11 22:47:50.350541
- Title: DeepQuarantine for Suspicious Mail
- Title(参考訳): 不審メール用深検疫装置
- Authors: Nikita Benkovich, Roman Dedenok and Dmitry Golubev
- Abstract要約: DeepQuarantine(DQ)は、潜在的なスパムメッセージを検出し、隔離するクラウド技術である。
隔離されたメールのほとんどはスパムであり、クライアントは遅滞なくメールを使用できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce DeepQuarantine (DQ), a cloud technology to detect
and quarantine potential spam messages. Spam attacks are becoming more diverse
and can potentially be harmful to email users. Despite the high quality and
performance of spam filtering systems, detection of a spam campaign can take
some time. Unfortunately, in this case some unwanted messages get delivered to
users. To solve this problem, we created DQ, which detects potential spam and
keeps it in a special Quarantine folder for a while. The time gained allows us
to double-check the messages to improve the reliability of the anti-spam
solution. Due to high precision of the technology, most of the quarantined mail
is spam, which allows clients to use email without delay. Our solution is based
on applying Convolutional Neural Networks on MIME headers to extract deep
features from large-scale historical data. We evaluated the proposed method on
real-world data and showed that DQ enhances the quality of spam detection.
- Abstract(参考訳): 本稿では,潜在的なスパムメッセージの検出と隔離を行うクラウド技術であるDeepQuarantine (DQ)を紹介する。
スパム攻撃は多様化しており、メールユーザーに有害な可能性がある。
スパムフィルタリングシステムの品質と性能にもかかわらず、スパムキャンペーンの検出には時間がかかる。
残念ながら、このケースでは、望ましくないメッセージがユーザに送られる。
そこで我々は,潜在的なスパムを検出し,それを特別なQuantineフォルダにしばらく保存するDQを開発した。
得られた時間によってメッセージのダブルチェックが可能になり、アンチスパムソリューションの信頼性が向上します。
この技術の精度が高いため、隔離されたメールのほとんどはスパムであり、クライアントは遅延なくメールを使用できる。
提案手法は,mimeヘッダに畳み込みニューラルネットワークを適用し,大規模履歴データから深い特徴を抽出する。
提案手法を実世界のデータで評価し,DQがスパム検出の質を高めることを示した。
関連論文リスト
- Exploring Content Concealment in Email [0.48748194765816943]
現代のメールフィルターは、悪意のあるメールに対する防御メカニズムの1つであり、しばしば高度な攻撃者によって回避される。
本研究は,攻撃者がメール中のHTMLとCSSを利用して任意のコンテンツを隠蔽する方法に焦点を当てる。
この隠されたコンテンツは、受信者によって検出されず、深刻なセキュリティリスクが生じる。
論文 参考訳(メタデータ) (2024-10-15T01:12:47Z) - Investigating the Effectiveness of Bayesian Spam Filters in Detecting LLM-modified Spam Mails [1.6298172960110866]
スパムとフィッシングは、サイバーセキュリティにおける重要な脅威であり、セキュリティインシデントの90%近くを担っている。
これらの攻撃が高度化するにつれて、堅牢な防御機構の必要性が増す。
ChatGPTのような大規模言語モデル(LLM)の出現は、新しい課題を提示している。
本研究は,LLM修正メールコンテンツに対するSpamAssassinの堅牢性と有効性を評価することを目的とする。
論文 参考訳(メタデータ) (2024-08-26T14:25:30Z) - ASETF: A Novel Method for Jailbreak Attack on LLMs through Translate Suffix Embeddings [58.82536530615557]
本稿では, 連続的な逆接接尾辞埋め込みを一貫性のある, 理解可能なテキストに変換するために, ASETF (Adversarial Suffix Embedding Translation Framework) を提案する。
本手法は,逆接接尾辞の計算時間を著しく短縮し,既存の手法よりもはるかに優れた攻撃成功率を実現する。
論文 参考訳(メタデータ) (2024-02-25T06:46:27Z) - Prompted Contextual Vectors for Spear-Phishing Detection [45.07804966535239]
スパイアフィッシング攻撃は重大なセキュリティ上の課題を示す。
本稿では,新しい文書ベクトル化手法に基づく検出手法を提案する。
提案手法は, LLM生成したスピアフィッシングメールの識別において, 91%のF1スコアを達成する。
論文 参考訳(メタデータ) (2024-02-13T09:12:55Z) - Building an Effective Email Spam Classification Model with spaCy [0.0]
著者はPythonプログラミング言語のspurCy自然言語処理ライブラリと3つの機械学習(ML)アルゴリズムを使用して、Gmailサービスから収集されたスパムメールを検出する。
論文 参考訳(メタデータ) (2023-03-15T17:41:11Z) - Spam Detection Using BERT [0.0]
BERT事前学習モデルを用いてスパム検知器を構築し,そのコンテキストを理解することで電子メールやメッセージの分類を行う。
スパム検出性能は98.62%,97.83%,99.13%,99.28%であった。
論文 参考訳(メタデータ) (2022-06-06T09:09:40Z) - Quarantine: Sparsity Can Uncover the Trojan Attack Trigger for Free [126.15842954405929]
トロイの木馬攻撃はディープニューラルネットワーク(DNN)を脅かし、ほとんどのサンプルで正常に動作させるが、トリガーを付けた入力に対して操作された結果を生成する。
そこで我々は,まず,クリーンな入力において,ほぼ完全なトロイの木馬の情報のみを保存し,かつ,すでに孤立しているサブネットワークに埋め込まれたトリガを復元する,新しいトロイの木馬ネットワーク検出方式を提案する。
論文 参考訳(メタデータ) (2022-05-24T06:33:31Z) - Deep convolutional forest: a dynamic deep ensemble approach for spam
detection in text [219.15486286590016]
本稿では,スパム検出のための動的深層アンサンブルモデルを提案する。
その結果、このモデルは高い精度、リコール、f1スコア、98.38%の精度を達成した。
論文 参考訳(メタデータ) (2021-10-10T17:19:37Z) - Holmes: An Efficient and Lightweight Semantic Based Anomalous Email
Detector [1.926698798754349]
異常メール検出のための効率的で軽量なセマンティックベースエンジンであるHolmesを提案する。
企業環境では,送信側と受信側の間には安定した関係があるが,不審なメールは一般的には異常な情報源からのものである。
実世界の企業環境におけるホームズの性能を評価し,毎日約5,000通のメールを送信・受信する。
論文 参考訳(メタデータ) (2021-04-16T11:42:10Z) - Robust and Verifiable Information Embedding Attacks to Deep Neural
Networks via Error-Correcting Codes [81.85509264573948]
ディープラーニングの時代、ユーザは、サードパーティの機械学習ツールを使用して、ディープニューラルネットワーク(DNN)分類器をトレーニングすることが多い。
情報埋め込み攻撃では、攻撃者は悪意のあるサードパーティの機械学習ツールを提供する。
本研究では,一般的なポストプロセッシング手法に対して検証可能で堅牢な情報埋め込み攻撃を設計することを目的とする。
論文 参考訳(メタデータ) (2020-10-26T17:42:42Z) - Robust Spammer Detection by Nash Reinforcement Learning [64.80986064630025]
我々は,スパマーとスパム検知器が互いに現実的な目標を競うミニマックスゲームを開発する。
提案アルゴリズムは,スパマーが混在するスパマーが実用目標を達成するのを確実に防止できる平衡検出器を確実に見つけることができることを示す。
論文 参考訳(メタデータ) (2020-06-10T21:18:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。