Granular Learning with Deep Generative Models using Highly Contaminated
Data
- URL: http://arxiv.org/abs/2001.04297v1
- Date: Mon, 6 Jan 2020 23:22:17 GMT
- Title: Granular Learning with Deep Generative Models using Highly Contaminated
Data
- Authors: John Just
- Abstract summary: An approach to utilize recent advances in deep generative models for anomaly detection in a granular sense on a real-world image dataset with quality issues is detailed.
The approach is completely unsupervised (no annotations available) but qualitatively shown to provide accurate semantic labeling for images.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An approach to utilize recent advances in deep generative models for anomaly
detection in a granular (continuous) sense on a real-world image dataset with
quality issues is detailed using recent normalizing flow models, with
implications in many other applications/domains/data types. The approach is
completely unsupervised (no annotations available) but qualitatively shown to
provide accurate semantic labeling for images via heatmaps of the scaled
log-likelihood overlaid on the images. When sorted based on the median values
per image, clear trends in quality are observed. Furthermore, downstream
classification is shown to be possible and effective via a weakly supervised
approach using the log-likelihood output from a normalizing flow model as a
training signal for a feature-extracting convolutional neural network. The
pre-linear dense layer outputs on the CNN are shown to disentangle high level
representations and efficiently cluster various quality issues. Thus, an
entirely non-annotated (fully unsupervised) approach is shown possible for
accurate estimation and classification of quality issues..
Related papers
- Exploring Beyond Logits: Hierarchical Dynamic Labeling Based on Embeddings for Semi-Supervised Classification [49.09505771145326]
We propose a Hierarchical Dynamic Labeling (HDL) algorithm that does not depend on model predictions and utilizes image embeddings to generate sample labels.
Our approach has the potential to change the paradigm of pseudo-label generation in semi-supervised learning.
arXiv Detail & Related papers (2024-04-26T06:00:27Z) - Few-shot Online Anomaly Detection and Segmentation [29.693357653538474]
This paper focuses on addressing the challenging yet practical few-shot online anomaly detection and segmentation (FOADS) task.
Under the FOADS framework, models are trained on a few-shot normal dataset, followed by inspection and improvement of their capabilities by leveraging unlabeled streaming data containing both normal and abnormal samples simultaneously.
In order to achieve improved performance with limited training samples, we employ multi-scale feature embedding extracted from a CNN pre-trained on ImageNet to obtain a robust representation.
arXiv Detail & Related papers (2024-03-27T02:24:00Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Generative Modeling Helps Weak Supervision (and Vice Versa) [87.62271390571837]
We propose a model fusing weak supervision and generative adversarial networks.
It captures discrete variables in the data alongside the weak supervision derived label estimate.
It is the first approach to enable data augmentation through weakly supervised synthetic images and pseudolabels.
arXiv Detail & Related papers (2022-03-22T20:24:21Z) - Semi-supervised Deep Learning for Image Classification with Distribution
Mismatch: A Survey [1.5469452301122175]
Deep learning models rely on the abundance of labelled observations to train a prospective model.
It is expensive to gather labelled observations of data, making the usage of deep learning models not ideal.
In many situations different unlabelled data sources might be available.
This raises the risk of a significant distribution mismatch between the labelled and unlabelled datasets.
arXiv Detail & Related papers (2022-03-01T02:46:00Z) - Evaluating State-of-the-Art Classification Models Against Bayes
Optimality [106.50867011164584]
We show that we can compute the exact Bayes error of generative models learned using normalizing flows.
We use our approach to conduct a thorough investigation of state-of-the-art classification models.
arXiv Detail & Related papers (2021-06-07T06:21:20Z) - Anomaly Detection in Image Datasets Using Convolutional Neural Networks,
Center Loss, and Mahalanobis Distance [0.0]
User activities generate a significant number of poor-quality or irrelevant images and data vectors.
For neural networks, the anomalous is usually defined as out-of-distribution samples.
This work proposes methods for supervised and semi-supervised detection of out-of-distribution samples in image datasets.
arXiv Detail & Related papers (2021-04-13T13:44:03Z) - MOCCA: Multi-Layer One-Class ClassificAtion for Anomaly Detection [16.914663209964697]
We propose our deep learning approach to the anomaly detection problem named Multi-LayerOne-Class Classification (MOCCA)
We explicitly leverage the piece-wise nature of deep neural networks by exploiting information extracted at different depths to detect abnormal data instances.
We show that our method reaches superior performances compared to the state-of-the-art approaches available in the literature.
arXiv Detail & Related papers (2020-12-09T08:32:56Z) - Understanding Anomaly Detection with Deep Invertible Networks through
Hierarchies of Distributions and Features [4.25227087152716]
Convolutional networks learn similar low-level feature distributions when trained on any natural image dataset.
When the discriminative features between inliers and outliers are on a high-level, anomaly detection becomes particularly challenging.
We propose two methods to remove the negative impact of model bias and domain prior on detecting high-level differences.
arXiv Detail & Related papers (2020-06-18T20:56:14Z) - Why Normalizing Flows Fail to Detect Out-of-Distribution Data [51.552870594221865]
Normalizing flows fail to distinguish between in- and out-of-distribution data.
We demonstrate that flows learn local pixel correlations and generic image-to-latent-space transformations.
We show that by modifying the architecture of flow coupling layers we can bias the flow towards learning the semantic structure of the target data.
arXiv Detail & Related papers (2020-06-15T17:00:01Z) - Semi-Supervised Learning with Normalizing Flows [54.376602201489995]
FlowGMM is an end-to-end approach to generative semi supervised learning with normalizing flows.
We show promising results on a wide range of applications, including AG-News and Yahoo Answers text data.
arXiv Detail & Related papers (2019-12-30T17:36:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.