Smooth markets: A basic mechanism for organizing gradient-based learners
- URL: http://arxiv.org/abs/2001.04678v2
- Date: Sat, 18 Jan 2020 09:09:22 GMT
- Title: Smooth markets: A basic mechanism for organizing gradient-based learners
- Authors: David Balduzzi, Wojciech M Czarnecki, Thomas W Anthony, Ian M Gemp,
Edward Hughes, Joel Z Leibo, Georgios Piliouras, Thore Graepel
- Abstract summary: We introduce smooth markets (SM-games), a class of n-player games with pairwise zero sum interactions.
SM-games codify a common design pattern in machine learning that includes (some) GANs, adversarial training, and other recent algorithms.
We show that SM-games are amenable to analysis and optimization using first-order methods.
- Score: 47.34060971879986
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the success of modern machine learning, it is becoming increasingly
important to understand and control how learning algorithms interact.
Unfortunately, negative results from game theory show there is little hope of
understanding or controlling general n-player games. We therefore introduce
smooth markets (SM-games), a class of n-player games with pairwise zero sum
interactions. SM-games codify a common design pattern in machine learning that
includes (some) GANs, adversarial training, and other recent algorithms. We
show that SM-games are amenable to analysis and optimization using first-order
methods.
Related papers
- Neural Population Learning beyond Symmetric Zero-sum Games [52.20454809055356]
We introduce NeuPL-JPSRO, a neural population learning algorithm that benefits from transfer learning of skills and converges to a Coarse Correlated (CCE) of the game.
Our work shows that equilibrium convergent population learning can be implemented at scale and in generality.
arXiv Detail & Related papers (2024-01-10T12:56:24Z) - Accelerate Multi-Agent Reinforcement Learning in Zero-Sum Games with
Subgame Curriculum Learning [65.36326734799587]
We present a novel subgame curriculum learning framework for zero-sum games.
It adopts an adaptive initial state distribution by resetting agents to some previously visited states.
We derive a subgame selection metric that approximates the squared distance to NE values.
arXiv Detail & Related papers (2023-10-07T13:09:37Z) - SPRING: Studying the Paper and Reasoning to Play Games [102.5587155284795]
We propose a novel approach, SPRING, to read the game's original academic paper and use the knowledge learned to reason and play the game through a large language model (LLM)
In experiments, we study the quality of in-context "reasoning" induced by different forms of prompts under the setting of the Crafter open-world environment.
Our experiments suggest that LLMs, when prompted with consistent chain-of-thought, have great potential in completing sophisticated high-level trajectories.
arXiv Detail & Related papers (2023-05-24T18:14:35Z) - Strategizing against Learners in Bayesian Games [74.46970859427907]
We study repeated two-player games where one of the players, the learner, employs a no-regret learning strategy.
We consider general Bayesian games, where the payoffs of both the payoffs of both the learner and the learner could depend on the type.
arXiv Detail & Related papers (2022-05-17T18:10:25Z) - Towards convergence to Nash equilibria in two-team zero-sum games [17.4461045395989]
Two-team zero-sum games are defined as multi-player games where players are split into two competing sets of agents.
We focus on the solution concept of Nash equilibria (NE)
We show that computing NE for this class of games is $textithard$ for the complexity class $mathrm$.
arXiv Detail & Related papers (2021-11-07T21:15:35Z) - Discovering Multi-Agent Auto-Curricula in Two-Player Zero-Sum Games [31.97631243571394]
We introduce a framework, LMAC, that automates the discovery of the update rule without explicit human design.
Surprisingly, even without human design, the discovered MARL algorithms achieve competitive or even better performance.
We show that LMAC is able to generalise from small games to large games, for example training on Kuhn Poker and outperforming PSRO.
arXiv Detail & Related papers (2021-06-04T22:30:25Z) - Learning to Play Sequential Games versus Unknown Opponents [93.8672371143881]
We consider a repeated sequential game between a learner, who plays first, and an opponent who responds to the chosen action.
We propose a novel algorithm for the learner when playing against an adversarial sequence of opponents.
Our results include algorithm's regret guarantees that depend on the regularity of the opponent's response.
arXiv Detail & Related papers (2020-07-10T09:33:05Z) - DREAM: Deep Regret minimization with Advantage baselines and Model-free
learning [24.273841968933475]
We introduce DREAM, a deep reinforcement learning algorithm that finds optimal strategies in imperfect-information games with multiple agents.
Our primary innovation is an effective algorithm that, in contrast to other regret-based deep learning algorithms, does not require access to a perfect simulator of the game to achieve good performance.
arXiv Detail & Related papers (2020-06-18T10:30:27Z) - Games for Fairness and Interpretability [2.084078990567849]
We propose a new class of games -- games for fairness and interpretability''
Games for fairness and interpretability are carefully-designed games with mass appeal.
We highlight several possible examples of games, their implications for fairness and interpretability, and why the machine learning community could benefit from them.
arXiv Detail & Related papers (2020-04-20T18:09:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.