論文の概要: Distributed Learning in the Non-Convex World: From Batch to Streaming
Data, and Beyond
- arxiv url: http://arxiv.org/abs/2001.04786v1
- Date: Tue, 14 Jan 2020 14:11:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-11 12:24:49.108459
- Title: Distributed Learning in the Non-Convex World: From Batch to Streaming
Data, and Beyond
- Title(参考訳): 非凸世界での分散学習: バッチからストリーミングデータ、そしてそれ以上
- Authors: Tsung-Hui Chang, Mingyi Hong, Hoi-To Wai, Xinwei Zhang, and Songtao Lu
- Abstract要約: 分散学習は、多くの人々が想定する、大規模に接続された世界の重要な方向となっている。
本稿では、スケーラブルな分散処理とリアルタイムデータ計算の4つの重要な要素について論じる。
実践的な問題や今後の研究についても論じる。
- 参考スコア(独自算出の注目度): 73.03743482037378
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distributed learning has become a critical enabler of the massively connected
world envisioned by many. This article discusses four key elements of scalable
distributed processing and real-time intelligence --- problems, data,
communication and computation. Our aim is to provide a fresh and unique
perspective about how these elements should work together in an effective and
coherent manner. In particular, we {provide a selective review} about the
recent techniques developed for optimizing non-convex models (i.e., problem
classes), processing batch and streaming data (i.e., data types), over the
networks in a distributed manner (i.e., communication and computation
paradigm). We describe the intuitions and connections behind a core set of
popular distributed algorithms, emphasizing how to trade off between
computation and communication costs. Practical issues and future research
directions will also be discussed.
- Abstract(参考訳): 分散学習は、多くの人々が思い描いている大規模に繋がった世界の重要な実現手段になっている。
本稿では、スケーラブルな分散処理とリアルタイムインテリジェンス(問題、データ、通信、計算)の4つの重要な要素について論じる。
私たちの目標は、これらの要素が効果的で一貫性のある方法でどのように連携すべきか、新鮮でユニークな視点を提供することです。
特に,非凸モデル(問題クラス)の最適化,バッチおよびストリーミングデータ(データ型)の処理,ネットワーク上の分散処理(通信と計算パラダイム)のために開発された最近の技術について,選択的レビューを提示する。
我々は,分散アルゴリズムのコアセットの背後にある直観と接続について述べ,計算と通信コストのトレードオフを強調する。
今後の課題や今後の研究の方向性についても述べる。
関連論文リスト
- Accelerated Stochastic ExtraGradient: Mixing Hessian and Gradient Similarity to Reduce Communication in Distributed and Federated Learning [50.382793324572845]
分散コンピューティングはデバイス間の通信を伴うため、効率性とプライバシという2つの重要な問題を解決する必要がある。
本稿では,データ類似性とクライアントサンプリングのアイデアを取り入れた新しい手法について分析する。
プライバシー問題に対処するために,付加雑音の手法を適用し,提案手法の収束への影響を解析する。
論文 参考訳(メタデータ) (2024-09-22T00:49:10Z) - High-Dimensional Distributed Sparse Classification with Scalable Communication-Efficient Global Updates [50.406127962933915]
我々はコミュニケーション効率のよい分散ロジスティック回帰モデルを学ぶことができる問題に対する解決策を開発する。
実験では、いくつかの分散更新ステップだけで、分散アルゴリズムよりも精度が大幅に向上することを示した。
論文 参考訳(メタデータ) (2024-07-08T19:34:39Z) - Communication-Efficient Large-Scale Distributed Deep Learning: A Comprehensive Survey [43.57122822150023]
本稿では,大規模分散ディープラーニングにおける効率的なコミュニケーションの実現を目的とした,アルゴリズムと技術に関する文献調査を行う。
まず,大規模分散学習の文脈において,モデル同期と通信データ圧縮のための効率的なアルゴリズムを導入する。
次に、分散トレーニングおよび推論におけるリソース割り当てとタスクスケジューリングに関する効率的な戦略を導入する。
論文 参考訳(メタデータ) (2024-04-09T08:35:04Z) - Asynchronous Local Computations in Distributed Bayesian Learning [8.516532665507835]
本稿では,高速な計算と通信オーバヘッドを同時に低減するために,ゴシップに基づく通信を提案する。
我々は、特に低データ範囲において、より高速な初期収束と性能精度の向上を観察する。
UCI MLレポジトリのガンマ望遠鏡とmHealthデータセットで,それぞれ平均78%,90%以上の分類精度を達成した。
論文 参考訳(メタデータ) (2023-11-06T20:11:41Z) - Communication-Efficient Decentralized Federated Learning via One-Bit
Compressive Sensing [52.402550431781805]
分散連合学習(DFL)は、様々なアプリケーションにまたがる実用性によって人気を博している。
集中型バージョンと比較して、DFLの多数のノード間で共有モデルをトレーニングするのはより難しい。
我々は,iADM (iexact alternating direction method) の枠組みに基づく新しいアルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-08-31T12:22:40Z) - Federated Reinforcement Learning at the Edge [1.4271989597349055]
現代のサイバー物理アーキテクチャでは、異なる物理的位置にあるシステムから収集されたデータを使用して適切な振る舞いを学び、不確実な環境に適応する。
本稿では,複数のエージェントが分散的に収集された時系列データに対して,強化学習問題を共同で解決するために,効率的にコミュニケーションを行う必要がある設定について考察する。
通信効率向上のためのアルゴリズムが提案され、理論的保証、実践的実装、数値評価がサポートされている。
論文 参考訳(メタデータ) (2021-12-11T03:28:59Z) - Collaborative Learning over Wireless Networks: An Introductory Overview [84.09366153693361]
主に、ワイヤレスデバイス間の協調トレーニングに焦点を合わせます。
過去数十年間、多くの分散最適化アルゴリズムが開発されてきた。
データ局所性 – すなわち、各参加デバイスで利用可能なデータがローカルのままである間、共同モデルを協調的にトレーニングすることができる。
論文 参考訳(メタデータ) (2021-12-07T20:15:39Z) - Scaling-up Distributed Processing of Data Streams for Machine Learning [10.581140430698103]
本稿では,計算・帯域幅制限方式における大規模分散最適化に着目した手法を最近開発した。
i)分散凸問題、(ii)分散主成分分析、(ii)グローバル収束を許容する幾何学的構造に関する非問題である。
論文 参考訳(メタデータ) (2020-05-18T16:28:54Z) - Communication-Efficient Distributed Deep Learning: A Comprehensive
Survey [22.42450750097714]
本稿では,コミュニケーション効率のよい分散学習アルゴリズムの総合的な調査を行う。
まず,データ並列分散トレーニングアルゴリズムの分類法を提案する。
次に、これらの4次元の問題に対処する最先端の研究について検討する。
論文 参考訳(メタデータ) (2020-03-10T05:42:44Z) - Quantized Decentralized Stochastic Learning over Directed Graphs [52.94011236627326]
有向グラフ上で通信する計算ノード間でデータポイントが分散される分散学習問題を考える。
モデルのサイズが大きくなるにつれて、分散学習は、各ノードが隣人にメッセージ(モデル更新)を送信することによる通信負荷の大きなボトルネックに直面します。
本稿では,分散コンセンサス最適化におけるプッシュサムアルゴリズムに基づく有向グラフ上の量子化分散学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-23T18:25:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。