A Sample Selection Approach for Universal Domain Adaptation
- URL: http://arxiv.org/abs/2001.05071v1
- Date: Tue, 14 Jan 2020 22:28:43 GMT
- Title: A Sample Selection Approach for Universal Domain Adaptation
- Authors: Omri Lifshitz and Lior Wolf
- Abstract summary: We study the problem of unsupervised domain adaption in the universal scenario.
Only some of the classes are shared between the source and target domains.
We present a scoring scheme that is effective in identifying the samples of the shared classes.
- Score: 94.80212602202518
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of unsupervised domain adaption in the universal
scenario, in which only some of the classes are shared between the source and
target domains. We present a scoring scheme that is effective in identifying
the samples of the shared classes. The score is used to select which samples in
the target domain to pseudo-label during training. Another loss term encourages
diversity of labels within each batch. Taken together, our method is shown to
outperform, by a sizable margin, the current state of the art on the literature
benchmarks.
Related papers
- Self-Paced Learning for Open-Set Domain Adaptation [50.620824701934]
Traditional domain adaptation methods presume that the classes in the source and target domains are identical.
Open-set domain adaptation (OSDA) addresses this limitation by allowing previously unseen classes in the target domain.
We propose a novel framework based on self-paced learning to distinguish common and unknown class samples.
arXiv Detail & Related papers (2023-03-10T14:11:09Z) - Combating Label Distribution Shift for Active Domain Adaptation [16.270897459117755]
We consider the problem of active domain adaptation (ADA) to unlabeled target data.
Inspired by recent analysis on a critical issue from label distribution mismatch between source and target in domain adaptation, we devise a method that addresses the issue for the first time in ADA.
arXiv Detail & Related papers (2022-08-13T09:06:45Z) - Cross-Domain Adaptive Clustering for Semi-Supervised Domain Adaptation [85.6961770631173]
In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them.
We propose a novel approach called Cross-domain Adaptive Clustering to address this problem.
arXiv Detail & Related papers (2021-04-19T16:07:32Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Your Classifier can Secretly Suffice Multi-Source Domain Adaptation [72.47706604261992]
Multi-Source Domain Adaptation (MSDA) deals with the transfer of task knowledge from multiple labeled source domains to an unlabeled target domain.
We present a different perspective to MSDA wherein deep models are observed to implicitly align the domains under label supervision.
arXiv Detail & Related papers (2021-03-20T12:44:13Z) - Joint Visual and Temporal Consistency for Unsupervised Domain Adaptive
Person Re-Identification [64.37745443119942]
This paper jointly enforces visual and temporal consistency in the combination of a local one-hot classification and a global multi-class classification.
Experimental results on three large-scale ReID datasets demonstrate the superiority of proposed method in both unsupervised and unsupervised domain adaptive ReID tasks.
arXiv Detail & Related papers (2020-07-21T14:31:27Z) - MiniMax Entropy Network: Learning Category-Invariant Features for Domain Adaptation [29.43532067090422]
We propose an easy-to-implement method dubbed MiniMax Entropy Networks (MMEN) based on adversarial learning.
Unlike most existing approaches which employ a generator to deal with domain difference, MMEN focuses on learning the categorical information from unlabeled target samples.
arXiv Detail & Related papers (2019-04-21T13:39:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.