MiniMax Entropy Network: Learning Category-Invariant Features for Domain Adaptation
- URL: http://arxiv.org/abs/1904.09601v4
- Date: Sat, 8 Jun 2024 06:02:59 GMT
- Title: MiniMax Entropy Network: Learning Category-Invariant Features for Domain Adaptation
- Authors: Chaofan Tao, Fengmao Lv, Lixin Duan, Min Wu,
- Abstract summary: We propose an easy-to-implement method dubbed MiniMax Entropy Networks (MMEN) based on adversarial learning.
Unlike most existing approaches which employ a generator to deal with domain difference, MMEN focuses on learning the categorical information from unlabeled target samples.
- Score: 29.43532067090422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: How to effectively learn from unlabeled data from the target domain is crucial for domain adaptation, as it helps reduce the large performance gap due to domain shift or distribution change. In this paper, we propose an easy-to-implement method dubbed MiniMax Entropy Networks (MMEN) based on adversarial learning. Unlike most existing approaches which employ a generator to deal with domain difference, MMEN focuses on learning the categorical information from unlabeled target samples with the help of labeled source samples. Specifically, we set an unfair multi-class classifier named categorical discriminator, which classifies source samples accurately but be confused about the categories of target samples. The generator learns a common subspace that aligns the unlabeled samples based on the target pseudo-labels. For MMEN, we also provide theoretical explanations to show that the learning of feature alignment reduces domain mismatch at the category level. Experimental results on various benchmark datasets demonstrate the effectiveness of our method over existing state-of-the-art baselines.
Related papers
- ProtoGMM: Multi-prototype Gaussian-Mixture-based Domain Adaptation Model for Semantic Segmentation [0.8213829427624407]
Domain adaptive semantic segmentation aims to generate accurate and dense predictions for an unlabeled target domain.
We propose the ProtoGMM model, which incorporates the GMM into contrastive losses to perform guided contrastive learning.
To achieve increased intra-class semantic similarity, decreased inter-class similarity, and domain alignment between the source and target domains, we employ multi-prototype contrastive learning.
arXiv Detail & Related papers (2024-06-27T14:50:50Z) - centroIDA: Cross-Domain Class Discrepancy Minimization Based on
Accumulative Class-Centroids for Imbalanced Domain Adaptation [17.97306640457707]
We propose a cross-domain class discrepancy minimization method based on accumulative class-centroids for IDA (centroIDA)
A series of experiments have proved that our method outperforms other SOTA methods on IDA problem, especially with the increasing degree of label shift.
arXiv Detail & Related papers (2023-08-21T10:35:32Z) - Unsupervised Domain Adaptation via Distilled Discriminative Clustering [45.39542287480395]
We re-cast the domain adaptation problem as discriminative clustering of target data.
We propose to jointly train the network using parallel, supervised learning objectives over labeled source data.
We conduct careful ablation studies and extensive experiments on five popular benchmark datasets.
arXiv Detail & Related papers (2023-02-23T13:03:48Z) - Cross-Domain Gradient Discrepancy Minimization for Unsupervised Domain
Adaptation [22.852237073492894]
Unsupervised Domain Adaptation (UDA) aims to generalize the knowledge learned from a well-labeled source domain to an unlabeled target domain.
We propose a cross-domain discrepancy minimization (CGDM) method which explicitly minimizes the discrepancy of gradients generated by source samples and target samples.
In order to compute the gradient signal of target samples, we further obtain target pseudo labels through a clustering-based self-supervised learning.
arXiv Detail & Related papers (2021-06-08T07:35:40Z) - Cross-Domain Adaptive Clustering for Semi-Supervised Domain Adaptation [85.6961770631173]
In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them.
We propose a novel approach called Cross-domain Adaptive Clustering to address this problem.
arXiv Detail & Related papers (2021-04-19T16:07:32Z) - OVANet: One-vs-All Network for Universal Domain Adaptation [78.86047802107025]
Existing methods manually set a threshold to reject unknown samples based on validation or a pre-defined ratio of unknown samples.
We propose a method to learn the threshold using source samples and to adapt it to the target domain.
Our idea is that a minimum inter-class distance in the source domain should be a good threshold to decide between known or unknown in the target.
arXiv Detail & Related papers (2021-04-07T18:36:31Z) - Your Classifier can Secretly Suffice Multi-Source Domain Adaptation [72.47706604261992]
Multi-Source Domain Adaptation (MSDA) deals with the transfer of task knowledge from multiple labeled source domains to an unlabeled target domain.
We present a different perspective to MSDA wherein deep models are observed to implicitly align the domains under label supervision.
arXiv Detail & Related papers (2021-03-20T12:44:13Z) - Minimax Active Learning [61.729667575374606]
Active learning aims to develop label-efficient algorithms by querying the most representative samples to be labeled by a human annotator.
Current active learning techniques either rely on model uncertainty to select the most uncertain samples or use clustering or reconstruction to choose the most diverse set of unlabeled examples.
We develop a semi-supervised minimax entropy-based active learning algorithm that leverages both uncertainty and diversity in an adversarial manner.
arXiv Detail & Related papers (2020-12-18T19:03:40Z) - Towards Fair Cross-Domain Adaptation via Generative Learning [50.76694500782927]
Domain Adaptation (DA) targets at adapting a model trained over the well-labeled source domain to the unlabeled target domain lying in different distributions.
We develop a novel Generative Few-shot Cross-domain Adaptation (GFCA) algorithm for fair cross-domain classification.
arXiv Detail & Related papers (2020-03-04T23:25:09Z) - A Sample Selection Approach for Universal Domain Adaptation [94.80212602202518]
We study the problem of unsupervised domain adaption in the universal scenario.
Only some of the classes are shared between the source and target domains.
We present a scoring scheme that is effective in identifying the samples of the shared classes.
arXiv Detail & Related papers (2020-01-14T22:28:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.