Physics Informed Deep Learning for Transport in Porous Media. Buckley
Leverett Problem
- URL: http://arxiv.org/abs/2001.05172v1
- Date: Wed, 15 Jan 2020 08:20:11 GMT
- Title: Physics Informed Deep Learning for Transport in Porous Media. Buckley
Leverett Problem
- Authors: Cedric G. Fraces, Adrien Papaioannou, Hamdi Tchelepi
- Abstract summary: We present a new hybrid physics-based machine-learning approach to reservoir modeling.
The methodology relies on a series of deep adversarial neural network architecture with physics-based regularization.
The proposed methodology is a simple and elegant way to instill physical knowledge to machine-learning algorithms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a new hybrid physics-based machine-learning approach to reservoir
modeling. The methodology relies on a series of deep adversarial neural network
architecture with physics-based regularization. The network is used to simulate
the dynamic behavior of physical quantities (i.e. saturation) subject to a set
of governing laws (e.g. mass conservation) and corresponding boundary and
initial conditions. A residual equation is formed from the governing
partial-differential equation and used as part of the training. Derivatives of
the estimated physical quantities are computed using automatic differentiation
algorithms. This allows the model to avoid overfitting, by reducing the
variance and permits extrapolation beyond the range of the training data
including uncertainty implicitely derived from the distribution output of the
generative adversarial networks. The approach is used to simulate a 2 phase
immiscible transport problem (Buckley Leverett). From a very limited dataset,
the model learns the parameters of the governing equation and is able to
provide an accurate physical solution, both in terms of shock and rarefaction.
We demonstrate how this method can be applied in the context of a forward
simulation for continuous problems. The use of these models for the inverse
problem is also presented, where the model simultaneously learns the physical
laws and determines key uncertainty subsurface parameters. The proposed
methodology is a simple and elegant way to instill physical knowledge to
machine-learning algorithms. This alleviates the two most significant
shortcomings of machine-learning algorithms: the requirement for large datasets
and the reliability of extrapolation. The principles presented in this paper
can be generalized in innumerable ways in the future and should lead to a new
class of algorithms to solve both forward and inverse physical problems.
Related papers
- Learning Physics From Video: Unsupervised Physical Parameter Estimation for Continuous Dynamical Systems [49.11170948406405]
State-of-the-art in automatic parameter estimation from video is addressed by training supervised deep networks on large datasets.
We propose a method to estimate the physical parameters of any known, continuous governing equation from single videos.
arXiv Detail & Related papers (2024-10-02T09:44:54Z) - Hybrid data-driven and physics-informed regularized learning of cyclic
plasticity with Neural Networks [0.0]
The proposed model architecture is simpler and more efficient compared to existing solutions from the literature.
The validation of the approach is carried out by means of surrogate data obtained with the Armstrong-Frederick kinematic hardening model.
arXiv Detail & Related papers (2024-03-04T07:09:54Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Learning solution of nonlinear constitutive material models using
physics-informed neural networks: COMM-PINN [0.0]
We apply physics-informed neural networks to solve the relations for nonlinear, path-dependent material behavior.
One advantage of this work is that it bypasses the repetitive Newton iterations needed to solve nonlinear equations in complex material models.
arXiv Detail & Related papers (2023-04-10T19:58:49Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Physics-informed Information Field Theory for Modeling Physical Systems with Uncertainty Quantification [0.0]
Information field theory (IFT) provides the tools necessary to perform statistics over fields that are not necessarily Gaussian.
We extend IFT to physics-informed IFT (PIFT) by encoding the functional priors with information about the physical laws which describe the field.
The posteriors derived from this PIFT remain independent of any numerical scheme and can capture multiple modes.
We numerically demonstrate that the method correctly identifies when the physics cannot be trusted, in which case it automatically treats learning the field as a regression problem.
arXiv Detail & Related papers (2023-01-18T15:40:19Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
Avoiding over-pressurization in subsurface reservoirs is critical for applications like CO2 sequestration and wastewater injection.
Managing the pressures by controlling injection/extraction are challenging because of complex heterogeneity in the subsurface.
We use differentiable programming with a full-physics model and machine learning to determine the fluid extraction rates that prevent over-pressurization.
arXiv Detail & Related papers (2022-06-21T20:38:13Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
We present a physics-informed framework for solving time-dependent partial differential equations.
Our model utilizes discrete cosine transforms to encode spatial and recurrent neural networks.
We show experimental results on the Taylor-Green vortex solution to the Navier-Stokes equations.
arXiv Detail & Related papers (2022-02-24T20:46:52Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - DeepPhysics: a physics aware deep learning framework for real-time
simulation [0.0]
We propose a solution to simulate hyper-elastic materials using a data-driven approach.
A neural network is trained to learn the non-linear relationship between boundary conditions and the resulting displacement field.
The results show that our network architecture trained with a limited amount of data can predict the displacement field in less than a millisecond.
arXiv Detail & Related papers (2021-09-17T12:15:47Z) - Fast Modeling and Understanding Fluid Dynamics Systems with
Encoder-Decoder Networks [0.0]
We show that an accurate deep-learning-based proxy model can be taught efficiently by a finite-volume-based simulator.
Compared to traditional simulation, the proposed deep learning approach enables much faster forward computation.
We quantify the sensitivity of the deep learning model to key physical parameters and hence demonstrate that the inversion problems can be solved with great acceleration.
arXiv Detail & Related papers (2020-06-09T17:14:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.