Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus
- URL: http://arxiv.org/abs/2310.06609v2
- Date: Tue, 5 Dec 2023 09:01:30 GMT
- Title: Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus
- Authors: Simone Manti and Alessandro Lucantonio
- Abstract summary: We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
- Score: 55.2480439325792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computational modeling is a key resource to gather insight into physical
systems in modern scientific research and engineering. While access to large
amount of data has fueled the use of Machine Learning (ML) to recover physical
models from experiments and increase the accuracy of physical simulations,
purely data-driven models have limited generalization and interpretability. To
overcome these limitations, we propose a framework that combines Symbolic
Regression (SR) and Discrete Exterior Calculus (DEC) for the automated
discovery of physical models starting from experimental data. Since these
models consist of mathematical expressions, they are interpretable and amenable
to analysis, and the use of a natural, general-purpose discrete mathematical
language for physics favors generalization with limited input data.
Importantly, DEC provides building blocks for the discrete analogue of field
theories, which are beyond the state-of-the-art applications of SR to physical
problems. Further, we show that DEC allows to implement a strongly-typed SR
procedure that guarantees the mathematical consistency of the recovered models
and reduces the search space of symbolic expressions. Finally, we prove the
effectiveness of our methodology by re-discovering three models of Continuum
Physics from synthetic experimental data: Poisson equation, the Euler's
Elastica and the equations of Linear Elasticity. Thanks to their
general-purpose nature, the methods developed in this paper may be applied to
diverse contexts of physical modeling.
Related papers
- Shape Arithmetic Expressions: Advancing Scientific Discovery Beyond Closed-Form Equations [56.78271181959529]
Generalized Additive Models (GAMs) can capture non-linear relationships between variables and targets, but they cannot capture intricate feature interactions.
We propose Shape Expressions Arithmetic ( SHAREs) that fuses GAM's flexible shape functions with the complex feature interactions found in mathematical expressions.
We also design a set of rules for constructing SHAREs that guarantee transparency of the found expressions beyond the standard constraints.
arXiv Detail & Related papers (2024-04-15T13:44:01Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Generalized Neural Closure Models with Interpretability [28.269731698116257]
We develop a novel and versatile methodology of unified neural partial delay differential equations.
We augment existing/low-fidelity dynamical models directly in their partial differential equation (PDE) forms with both Markovian and non-Markovian neural network (NN) closure parameterizations.
We demonstrate the new generalized neural closure models (gnCMs) framework using four sets of experiments based on advecting nonlinear waves, shocks, and ocean acidification models.
arXiv Detail & Related papers (2023-01-15T21:57:43Z) - Modular machine learning-based elastoplasticity: generalization in the
context of limited data [0.0]
We discuss a hybrid framework that can work on a variable amount of data by relying on the modularity of the elastoplasticity formulation.
The discovered material models are found to not only interpolate well but also allow for accurate extrapolation in a thermodynamically consistent manner far outside the domain of the training data.
arXiv Detail & Related papers (2022-10-15T17:35:23Z) - Scientific Machine Learning for Modeling and Simulating Complex Fluids [0.0]
rheological equations relate internal stresses and deformations in complex fluids.
Data-driven models provide accessible alternatives to expensive first-principles models.
Development of similar models for complex fluids has lagged.
arXiv Detail & Related papers (2022-10-10T04:35:31Z) - Neural Implicit Representations for Physical Parameter Inference from a Single Video [49.766574469284485]
We propose to combine neural implicit representations for appearance modeling with neural ordinary differential equations (ODEs) for modelling physical phenomena.
Our proposed model combines several unique advantages: (i) Contrary to existing approaches that require large training datasets, we are able to identify physical parameters from only a single video.
The use of neural implicit representations enables the processing of high-resolution videos and the synthesis of photo-realistic images.
arXiv Detail & Related papers (2022-04-29T11:55:35Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Surrogate Modeling for Physical Systems with Preserved Properties and
Adjustable Tradeoffs [0.0]
We present a model-based and a data-driven strategy to generate surrogate models.
The latter generates interpretable surrogate models by fitting artificial relations to a presupposed topological structure.
Our framework is compatible with various spatial discretization schemes for distributed parameter models.
arXiv Detail & Related papers (2022-02-02T17:07:02Z) - Automatically Polyconvex Strain Energy Functions using Neural Ordinary
Differential Equations [0.0]
Deep neural networks are able to learn complex material without the constraints of form approximations.
N-ODE material model is able to capture synthetic data generated from closedform material models.
framework can be used to model a large class of materials.
arXiv Detail & Related papers (2021-10-03T13:11:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.