論文の概要: Towards Deep Unsupervised SAR Despeckling with Blind-Spot Convolutional
Neural Networks
- arxiv url: http://arxiv.org/abs/2001.05264v1
- Date: Wed, 15 Jan 2020 12:21:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-11 06:24:43.102895
- Title: Towards Deep Unsupervised SAR Despeckling with Blind-Spot Convolutional
Neural Networks
- Title(参考訳): Blind-Spot畳み込みニューラルネットワークによる深層非教師付きSAR再検討
- Authors: Andrea Bordone Molini, Diego Valsesia, Giulia Fracastoro, Enrico Magli
- Abstract要約: ディープラーニング技術は、古典的なモデルに基づく非特定アルゴリズムよりも優れています。
本稿では,自己教師型ベイズ解法を提案する。
提案するネットワークの性能は,合成データの教師あり学習手法に非常に近いことを示し,実データ上での競争力を示す。
- 参考スコア(独自算出の注目度): 30.410981386006394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: SAR despeckling is a problem of paramount importance in remote sensing, since
it represents the first step of many scene analysis algorithms. Recently, deep
learning techniques have outperformed classical model-based despeckling
algorithms. However, such methods require clean ground truth images for
training, thus resorting to synthetically speckled optical images since clean
SAR images cannot be acquired. In this paper, inspired by recent works on
blind-spot denoising networks, we propose a self-supervised Bayesian
despeckling method. The proposed method is trained employing only noisy images
and can therefore learn features of real SAR images rather than synthetic data.
We show that the performance of the proposed network is very close to the
supervised training approach on synthetic data and competitive on real data.
- Abstract(参考訳): SARの切り離しは、多くのシーン解析アルゴリズムの第一段階を示すため、リモートセンシングにおいて最も重要な問題である。
近年、ディープラーニング技術は古典的モデルに基づく非特定アルゴリズムよりも優れている。
しかし,このような手法では,クリーンなsar画像の取得ができないため,合成投機による光学画像の活用が求められている。
本稿では,近年の盲点認知ネットワークの研究に触発されて,ベイジアン解法を提案する。
提案手法はノイズ画像のみを用いて学習し,合成データではなく実sar画像の特徴を学習できる。
提案するネットワークの性能は,合成データに対する教師付きトレーニングアプローチと,実データ上での競争力に非常に近いことを示す。
関連論文リスト
- Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
本稿では,金属人工物削減のための適応畳み込み辞書ネットワーク(ACDNet)を提案する。
我々のACDNetは、トレーニングデータを介して、アーティファクトフリーCT画像の事前を自動で学習し、入力されたCT画像ごとに表現カーネルを適応的に調整することができる。
本手法は,モデルに基づく手法の明確な解釈可能性を継承し,学習に基づく手法の強力な表現能力を維持する。
論文 参考訳(メタデータ) (2022-05-16T06:49:36Z) - Neural Maximum A Posteriori Estimation on Unpaired Data for Motion
Deblurring [87.97330195531029]
本稿では、ニューラルネットワークをトレーニングし、失明したデータから視覚情報や鋭いコンテンツを復元するためのニューラルネットワークの最大Aポストエリオリ(NeurMAP)推定フレームワークを提案する。
提案されたNeurMAPは、既存のデブロアリングニューラルネットワークに対するアプローチであり、未使用データセット上のイメージデブロアリングネットワークのトレーニングを可能にする最初のフレームワークである。
論文 参考訳(メタデータ) (2022-04-26T08:09:47Z) - Comparison of convolutional neural networks for cloudy optical images
reconstruction from single or multitemporal joint SAR and optical images [0.21079694661943604]
本研究では,SARと光画像を用いた畳み込みニューラルネットワークの評価に着目する。
光画像再構成を目的としたディープネットのトレーニングのためのデータセット作成を容易にするシンプルなフレームワークを提案する。
空間分割データ構造が,クラウドカバレッジ,相対的取得日,画素の妥当性,SARと光学画像との相対的近接といった点において,サンプルのクエリにどのように役立つかを示す。
論文 参考訳(メタデータ) (2022-04-01T13:31:23Z) - Low-light Image Enhancement by Retinex Based Algorithm Unrolling and
Adjustment [50.13230641857892]
本稿では,低照度画像強調(LIE)問題に対する新たなディープラーニングフレームワークを提案する。
提案フレームワークは,大域的明るさと局所的明るさ感度の両方を考慮したアルゴリズムアンロールと調整ネットワークに着想を得た分解ネットワークを含む。
一連の典型的なLIEデータセットの実験では,既存の手法と比較して,定量的かつ視覚的に,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-02-12T03:59:38Z) - Transformer-based SAR Image Despeckling [53.99620005035804]
本稿では,SAR画像復号化のためのトランスフォーマーネットワークを提案する。
提案する非特定ネットワークは、トランスフォーマーベースのエンコーダにより、異なる画像領域間のグローバルな依存関係を学習することができる。
実験により,提案手法は従来型および畳み込み型ニューラルネットワークに基づく解法よりも大幅に改善されていることが示された。
論文 参考訳(メタデータ) (2022-01-23T20:09:01Z) - Hyperspectral Denoising Using Unsupervised Disentangled Spatio-Spectral
Deep Priors [10.65207459525818]
近年、データ駆動ニューラルネットワークは、rgb自然画像のノイズ化に有望な性能を示している。
データ駆動の事前処理は、トレーニングデータがないため、ハイパースペクトル画像の取得が難しい。
この研究は、HSIの古典的スペクトル分解に基づく教師なしのDIPフレームワークを提供する。
論文 参考訳(メタデータ) (2021-02-24T14:38:51Z) - Speckle2Void: Deep Self-Supervised SAR Despeckling with Blind-Spot
Convolutional Neural Networks [30.410981386006394]
切り離しはシーン分析アルゴリズムの 重要な予備段階です
ディープラーニングの最近の成功は、新しい世代の非仕様化技術が想定されている。
本稿では,自己教師型ベイズ解法を提案する。
論文 参考訳(メタデータ) (2020-07-04T11:38:48Z) - SAR Image Despeckling by Deep Neural Networks: from a pre-trained model
to an end-to-end training strategy [8.097773654147105]
畳み込みニューラルネットワーク(CNN)は、最近、SAR画像復元の最先端のパフォーマンスに達することが示されている。
CNNトレーニングには、多くのスペックルフリー/スペックル故障した画像のペアという、優れたトレーニングデータが必要です。
本稿では,実施したいスペックル除去作業に応じて,採用可能なさまざまな戦略を解析する。
論文 参考訳(メタデータ) (2020-06-28T09:47:31Z) - Syn2Real Transfer Learning for Image Deraining using Gaussian Processes [92.15895515035795]
CNNに基づく画像デライニング手法は,再現誤差や視覚的品質の点で優れた性能を発揮している。
実世界の完全ラベル付き画像デライニングデータセットを取得する上での課題により、既存の手法は合成されたデータのみに基づいて訓練される。
本稿では,ガウス過程に基づく半教師付き学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-10T00:33:18Z) - Virtual SAR: A Synthetic Dataset for Deep Learning based Speckle Noise
Reduction Algorithms [3.0448872422956432]
スペックル削減アルゴリズムのトレーニングのための合成データを生成する標準的な方法を提案する。
この領域の研究を進めるためのユースケースを実証する。
論文 参考訳(メタデータ) (2020-04-23T08:27:45Z) - Deep CG2Real: Synthetic-to-Real Translation via Image Disentanglement [78.58603635621591]
画像空間における未ペアの合成-現実翻訳ネットワークの訓練は、厳しい制約下にある。
画像の非交叉シェーディング層とアルベド層に作用する半教師付きアプローチを提案する。
私たちの2段階のパイプラインはまず、物理ベースのレンダリングをターゲットとして、教師付き方法で正確なシェーディングを予測することを学習します。
論文 参考訳(メタデータ) (2020-03-27T21:45:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。