Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits
- URL: http://arxiv.org/abs/2001.05502v1
- Date: Wed, 15 Jan 2020 19:00:01 GMT
- Title: Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits
- Authors: Hugo V. Lepage, Aleksander A. Lasek, David R. M. Arvidsson-Shukur,
Crispin H. W. Barnes
- Abstract summary: Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
- Score: 62.997667081978825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric
materials. Here we show how electron-spin qubits located on dynamic quantum
dots can be entangled. Previous theoretical and numerical models of quantum-dot
entanglement generation have been insufficient to study quantum dynamics in
realistic experimental devices. We utilize state-of-the-art graphics processing
units to simulate the wave function dynamics of two electrons carried by a SAW
through a 2D semiconductor heterostructure. We build a methodology to implement
a power-of-SWAP gate via the Coulomb interaction. A benefit of the SAW
architecture is that it provides a coherent way of transporting the qubits
through an electrostatic potential. This architecture allows us to avoid
problems associated with fast control pulses and guarantees operation
consistency, providing an advantage over static qubits. For inter-dot barrier
heights where the double occupation energy is sufficiently greater than the
double-dot hopping energy, we find that parameters based on experiments in
GaAs/AlGaAs heterostructures can produce a high-fidelity root-of-SWAP
operation. Our results provide a methodology for a crucial component of
dynamic-qubit quantum computing.
Related papers
- Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories [103.95523007319937]
We study the dynamics of local excitations in a lattice of superconducting qubits.
For confined excitations, the magnetic field induces a tension in the string connecting them.
Our method allows us to experimentally image string dynamics in a (2+1)D LGT.
arXiv Detail & Related papers (2024-09-25T17:59:05Z) - Simulating 2D topological quantum phase transitions on a digital quantum computer [3.727382912998531]
Efficient preparation of many-body ground states is key to harnessing the power of quantum computers in studying quantum many-body systems.
We propose a simple method to design exact linear-depth parameterized quantum circuits which prepare a family of ground states across topological quantum phase transitions in 2D.
We show that the 2D isoTNS can also be efficiently simulated by a holographic quantum algorithm requiring only an 1D array of qubits.
arXiv Detail & Related papers (2023-12-08T15:01:44Z) - Coulomb interaction-driven entanglement of electrons on helium [0.0]
We theoretically investigate the generation of emphmotional entanglement between two electrons via their unscreened Coulomb interaction.
We compute the motional energy spectra of the electrons, as well as their entanglement, by diagonalizing the model Hamiltonian with respect to a single-particle Hartree product basis.
In particular, the theoretical tools developed here can be used for fine tuning and optimization of control parameters in future experiments with electrons trapped above the surface of superfluid helium or solid neon.
arXiv Detail & Related papers (2023-10-07T21:40:20Z) - Variational waveguide QED simulators [58.720142291102135]
Waveguide QED simulators are made by quantum emitters interacting with one-dimensional photonic band-gap materials.
Here, we demonstrate how these interactions can be a resource to develop more efficient variational quantum algorithms.
arXiv Detail & Related papers (2023-02-03T18:55:08Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Modelling semiconductor spin qubits and their charge noise environment
for quantum gate fidelity estimation [0.9406493726662083]
The spin of an electron confined in semiconductor quantum dots is a promising candidate for quantum bit (qubit) implementations.
We present here a co-modelling framework for double quantum dot (DQD) devices and their charge noise environment.
We find an inverse correlation between quantum gate errors and quantum dot confinement.
arXiv Detail & Related papers (2022-10-10T10:12:54Z) - Jellybean quantum dots in silicon for qubit coupling and on-chip quantum
chemistry [0.6818394664182874]
Small size and excellent integrability of silicon metal-oxide-semiconductor (SiMOS) quantum dot spin qubits make them an attractive system for mass-manufacturable, scaled-up quantum processors.
This paper investigates the charge and spin characteristics of an elongated quantum dot for the prospects of acting as a qubit-qubit coupler.
arXiv Detail & Related papers (2022-08-08T12:24:46Z) - Electromagnetically induced transparency in inhomogeneously broadened
divacancy defect ensembles in SiC [52.74159341260462]
Electromagnetically induced transparency (EIT) is a phenomenon that can provide strong and robust interfacing between optical signals and quantum coherence of electronic spins.
We show that EIT can be established with high visibility also in this material platform upon careful design of the measurement geometry.
Our work provides an understanding of EIT in multi-level systems with significant inhomogeneities, and our considerations are valid for a wide array of defects in semiconductors.
arXiv Detail & Related papers (2022-03-18T11:22:09Z) - Strong parametric dispersive shifts in a statically decoupled
multi-qubit cavity QED system [0.4915375958667782]
Cavity quantum electrodynamics (QED) with in-situ tunable interactions is important for developing novel systems for quantum simulation and computing.
Here, we couple two transmon qubits to a lumped-element cavity through a shared dc-SQUID.
We show that by parametrically driving the SQUID with an oscillating flux it is possible to independently tune the interactions between either of the qubits and the cavity dynamically.
arXiv Detail & Related papers (2021-03-16T18:46:57Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.