Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories
- URL: http://arxiv.org/abs/2409.17142v1
- Date: Wed, 25 Sep 2024 17:59:05 GMT
- Title: Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories
- Authors: Tyler A. Cochran, Bernhard Jobst, Eliott Rosenberg, Yuri D. Lensky, Gaurav Gyawali, Norhan Eassa, Melissa Will, Dmitry Abanin, Rajeev Acharya, Laleh Aghababaie Beni, Trond I. Andersen, Markus Ansmann, Frank Arute, Kunal Arya, Abraham Asfaw, Juan Atalaya, Ryan Babbush, Brian Ballard, Joseph C. Bardin, Andreas Bengtsson, Alexander Bilmes, Alexandre Bourassa, Jenna Bovaird, Michael Broughton, David A. Browne, Brett Buchea, Bob B. Buckley, Tim Burger, Brian Burkett, Nicholas Bushnell, Anthony Cabrera, Juan Campero, Hung-Shen Chang, Zijun Chen, Ben Chiaro, Jahan Claes, Agnetta Y. Cleland, Josh Cogan, Roberto Collins, Paul Conner, William Courtney, Alexander L. Crook, Ben Curtin, Sayan Das, Sean Demura, Laura De Lorenzo, Agustin Di Paolo, Paul Donohoe, Ilya Drozdov, Andrew Dunsworth, Alec Eickbusch, Aviv Moshe Elbag, Mahmoud Elzouka, Catherine Erickson, Vinicius S. Ferreira, Leslie Flores Burgos, Ebrahim Forati, Austin G. Fowler, Brooks Foxen, Suhas Ganjam, Robert Gasca, Élie Genois, William Giang, Dar Gilboa, Raja Gosula, Alejandro Grajales Dau, Dietrich Graumann, Alex Greene, Jonathan A. Gross, Steve Habegger, Monica Hansen, Matthew P. Harrigan, Sean D. Harrington, Paula Heu, Oscar Higgott, Jeremy Hilton, Hsin-Yuan Huang, Ashley Huff, William J. Huggins, Evan Jeffrey, Zhang Jiang, Cody Jones, Chaitali Joshi, Pavol Juhas, Dvir Kafri, Hui Kang, Amir H. Karamlou, Kostyantyn Kechedzhi, Trupti Khaire, Tanuj Khattar, Mostafa Khezri, Seon Kim, Paul V. Klimov, Bryce Kobrin, Alexander N. Korotkov, Fedor Kostritsa, John Mark Kreikebaum, Vladislav D. Kurilovich, David Landhuis, Tiano Lange-Dei, Brandon W. Langley, Kim-Ming Lau, Justin Ledford, Kenny Lee, Brian J. Lester, Loïck Le Guevel, Wing Yan Li, Alexander T. Lill, William P. Livingston, Aditya Locharla, Daniel Lundahl, Aaron Lunt, Sid Madhuk, Ashley Maloney, Salvatore Mandrà, Leigh S. Martin, Orion Martin, Cameron Maxfield, Jarrod R. McClean, Matt McEwen, Seneca Meeks, Anthony Megrant, Kevin C. Miao, Reza Molavi, Sebastian Molina, Shirin Montazeri, Ramis Movassagh, Charles Neill, Michael Newman, Anthony Nguyen, Murray Nguyen, Chia-Hung Ni, Murphy Yuezhen Niu, William D. Oliver, Kristoffer Ottosson, Alex Pizzuto, Rebecca Potter, Orion Pritchard, Chris Quintana, Ganesh Ramachandran, Matthew J. Reagor, David M. Rhodes, Gabrielle Roberts, Kannan Sankaragomathi, Kevin J. Satzinger, Henry F. Schurkus, Michael J. Shearn, Aaron Shorter, Noah Shutty, Vladimir Shvarts, Volodymyr Sivak, Spencer Small, W. Clarke Smith, Sofia Springer, George Sterling, Jordan Suchard, Aaron Szasz, Alex Sztein, Douglas Thor, M. Mert Torunbalci, Abeer Vaishnav, Justin Vargas, Sergey Vdovichev, Guifre Vidal, Catherine Vollgraff Heidweiller, Steven Waltman, Shannon X. Wang, Brayden Ware, Theodore White, Kristi Wong, Bryan W. K. Woo, Cheng Xing, Z. Jamie Yao, Ping Yeh, Bicheng Ying, Juhwan Yoo, Noureldin Yosri, Grayson Young, Adam Zalcman, Yaxing Zhang, Ningfeng Zhu, Nicholas Zobris, Sergio Boixo, Julian Kelly, Erik Lucero, Yu Chen, Vadim Smelyanskiy, Hartmut Neven, Adam Gammon-Smith, Frank Pollmann, Michael Knap, Pedram Roushan,
- Abstract summary: We study the dynamics of local excitations in a lattice of superconducting qubits.
For confined excitations, the magnetic field induces a tension in the string connecting them.
Our method allows us to experimentally image string dynamics in a (2+1)D LGT.
- Score: 103.95523007319937
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lattice gauge theories (LGTs) can be employed to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging as it requires solving many-body problems that are generally beyond perturbative limits. We investigate the dynamics of local excitations in a $\mathbb{Z}_2$ LGT using a two-dimensional lattice of superconducting qubits. We first construct a simple variational circuit which prepares low-energy states that have a large overlap with the ground state; then we create particles with local gates and simulate their quantum dynamics via a discretized time evolution. As the effective magnetic field is increased, our measurements show signatures of transitioning from deconfined to confined dynamics. For confined excitations, the magnetic field induces a tension in the string connecting them. Our method allows us to experimentally image string dynamics in a (2+1)D LGT from which we uncover two distinct regimes inside the confining phase: for weak confinement the string fluctuates strongly in the transverse direction, while for strong confinement transverse fluctuations are effectively frozen. In addition, we demonstrate a resonance condition at which dynamical string breaking is facilitated. Our LGT implementation on a quantum processor presents a novel set of techniques for investigating emergent particle and string dynamics.
Related papers
- Observation of string breaking on a (2 + 1)D Rydberg quantum simulator [59.63568901264298]
We report the observation of string breaking in synthetic quantum matter using a programmable quantum simulator.
Our work paves a way to explore phenomena in high-energy physics using programmable quantum simulators.
arXiv Detail & Related papers (2024-10-21T22:33:16Z) - Observation of string-breaking dynamics in a quantum simulator [30.432877421232842]
String-breaking dynamics play vital role in high-energy particle collisions and early universe evolution.
Quantum simulators are expected to outperform classical computing methods.
We experimentally demonstrate for the first time, for the first time, the required experimental capabilities to simulate string-breaking dynamics.
arXiv Detail & Related papers (2024-10-17T17:46:07Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Ultrafast Entanglement Dynamics in Monitored Quantum Circuits [2.8876257574732604]
We study the non-equilibrium dynamics of weakly monitored quantum circuits.
We find entanglement dynamics in monitored circuits is indeed "faster" than that of unitary ones.
arXiv Detail & Related papers (2022-12-20T20:22:39Z) - Simulating 2+1D Lattice Quantum Electrodynamics at Finite Density with
Neural Flow Wavefunctions [5.049046327655608]
We present a neural flow wavefunction, Gauge-Fermion FlowNet, to simulate 2+1D lattice compact quantum electrodynamics with finite density dynamical fermions.
We investigate confinement and string breaking phenomena in different fermion density and hopping regimes.
arXiv Detail & Related papers (2022-12-14T18:59:07Z) - Bloch-Landau-Zener dynamics induced by a synthetic field in a photonic
quantum walk [52.77024349608834]
We realize a photonic quantum walk in the presence of a synthetic gauge field.
We investigate intriguing system dynamics characterized by the interplay between Bloch oscillations and Landau-Zener transitions.
arXiv Detail & Related papers (2020-11-11T16:35:41Z) - Quantum Simulation of Lattice Gauge Theories on Superconducting
Circuits: Quantum Phase Transition and Quench Dynamics [10.967081346848687]
We propose an implementation to approximate $mathbbZ$ LGT on superconducting quantum circuits.
With an increase of the transverse (electric) field, the confinement system displays a quantum phase transition from a disordered phase to a translational symmetry breaking phase.
Our results pave the way for simulating the LGT on superconducting circuits, including the quantum phase transition and quench dynamics.
arXiv Detail & Related papers (2020-09-28T14:16:09Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.