Large flux-mediated coupling in hybrid electromechanical system with a
transmon qubit
- URL: http://arxiv.org/abs/2001.05700v2
- Date: Wed, 28 Oct 2020 13:44:05 GMT
- Title: Large flux-mediated coupling in hybrid electromechanical system with a
transmon qubit
- Authors: Tanmoy Bera, Sourav Majumder, Sudhir Kumar Sahu and Vibhor Singh
- Abstract summary: Control over the quantum states of a massive oscillator is important for several technological applications.
We present a hybrid device, consisting of a superconducting transmon qubit and a mechanical resonator coupled using the magnetic-flux.
With improvements in qubit coherence, this system offers a novel platform to realize rich interactions and could potentially provide full control over the quantum motional states.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Control over the quantum states of a massive oscillator is important for
several technological applications and to test the fundamental limits of
quantum mechanics. Addition of an internal degree of freedom to the oscillator
could be a valuable resource for such control. Recently, hybrid
electromechanical systems using superconducting qubits, based on
electric-charge mediated coupling, have been quite successful. Here, we realize
a hybrid device, consisting of a superconducting transmon qubit and a
mechanical resonator coupled using the magnetic-flux. The coupling stems from
the quantum-interference of the superconducting phase across the tunnel
junctions. We demonstrate a vacuum electromechanical coupling rate up to 4 kHz
by making the transmon qubit resonant with the readout cavity. Consequently,
thermal-motion of the mechanical resonator is detected by driving the
hybridized-mode with mean-occupancy well below one photon. By tuning qubit away
from the cavity, electromechanical coupling can be enhanced to 40 kHz. In this
limit, a small coherent drive on the mechanical resonator results in the
splitting of qubit spectrum, and we observe interference signature arising from
the Landau-Zener-St\"uckelberg effect. With improvements in qubit coherence,
this system offers a novel platform to realize rich interactions and could
potentially provide full control over the quantum motional states.
Related papers
- Engineering Entangled Coherent States of Magnons and Phonons via a
Transmon Qubit [0.0]
We propose a scheme for generating and controlling entangled coherent states (ECS) of magnons.
The proposed hybrid circuit architecture comprises a superconducting transmon qubit coupled to a pair of magnonic Yttrium Iron Garnet (YIG) spherical resonators.
We numerically demonstrate a protocol for the preparation of magnonic and mechanical Bell states with high fidelity.
arXiv Detail & Related papers (2023-09-28T15:20:36Z) - Strong dispersive coupling between a mechanical resonator and a
fluxonium superconducting qubit [1.3828553628764202]
We extend the reach of circuit quantum acousto-dynamics experiments into a new range of frequencies.
We have engineered a qubit-phonon coupling rate of $gapprox2pitimes14textMHz$, and achieved a dispersive interaction that exceeds the decoherence rates of both systems.
Our results demonstrate the potential for fluxonium-based hybrid quantum systems, and a path for developing new quantum sensing and information processing schemes with phonons at frequencies below 700 MHz.
arXiv Detail & Related papers (2023-04-26T14:33:39Z) - An integrated microwave-to-optics interface for scalable quantum
computing [47.187609203210705]
We present a new design for an integrated transducer based on a superconducting resonator coupled to a silicon photonic cavity.
We experimentally demonstrate its unique performance and potential for simultaneously realizing all of the above conditions.
Our device couples directly to a 50-Ohm transmission line and can easily be scaled to a large number of transducers on a single chip.
arXiv Detail & Related papers (2022-10-27T18:05:01Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - Prospects of cooling a mechanical resonator with a transmon qubit in
c-QED setup [0.0]
We study a hybrid system consisting of a mechanical resonator longitudinally coupled to a transmon qubit.
The coupling between the mechanical resonator and transmon qubit can be implemented by modulation of the SQUID inductance.
measurements of the thermomechanical motion is possible in the dispersive limit, while maintaining a large coupling between qubit and mechanical mode.
arXiv Detail & Related papers (2022-05-14T10:00:54Z) - Continuous-Wave Frequency Upconversion with a Molecular Optomechanical
Nanocavity [46.43254474406406]
We use molecular cavity optomechanics to demonstrate upconversion of sub-microwatt continuous-wave signals at $sim$32THz into the visible domain at ambient conditions.
The device consists in a plasmonic nanocavity hosting a small number of molecules. The incoming field resonantly drives a collective molecular vibration, which imprints an optomechanical modulation on a visible pump laser.
arXiv Detail & Related papers (2021-07-07T06:23:14Z) - Phonon-number resolution of voltage-biased mechanical oscillators with
weakly-anharmonic superconducting circuits [0.0]
We study the electrostatic coupling of motion to a weakly anharmonic circuit, namely the transmon qubit.
To remedy this issue, we explore the requirements to reach phonon-number resolution.
arXiv Detail & Related papers (2021-03-08T15:32:20Z) - Measurements of a quantum bulk acoustic resonator using a
superconducting qubit [0.0]
Phonons hold promise for quantum-focused applications as diverse as sensing, information processing, and communication.
We describe a piezoelectric quantum bulk acoustic resonator (QBAR) with a 4.88 GHz resonant frequency.
We couple this QBAR resonator to a superconducting qubit on a separate die and demonstrate quantum control of the mechanics in the coupled system.
arXiv Detail & Related papers (2020-12-08T17:36:33Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Universal non-adiabatic control of small-gap superconducting qubits [47.187609203210705]
We introduce a superconducting composite qubit formed from two capacitively coupled transmon qubits.
We control this low-frequency CQB using solely baseband pulses, non-adiabatic transitions, and coherent Landau-Zener interference.
This work demonstrates that universal non-adiabatic control of low-frequency qubits is feasible using solely baseband pulses.
arXiv Detail & Related papers (2020-03-29T22:48:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.