An integrated microwave-to-optics interface for scalable quantum
computing
- URL: http://arxiv.org/abs/2210.15702v1
- Date: Thu, 27 Oct 2022 18:05:01 GMT
- Title: An integrated microwave-to-optics interface for scalable quantum
computing
- Authors: Matthew J. Weaver, Pim Duivestein, Alexandra C. Bernasconi, Selim
Scharmer, Mathilde Lemang, Thierry C. van Thiel, Frederick Hijazi, Bas
Hensen, Simon Gr\"oblacher, Robert Stockill
- Abstract summary: We present a new design for an integrated transducer based on a superconducting resonator coupled to a silicon photonic cavity.
We experimentally demonstrate its unique performance and potential for simultaneously realizing all of the above conditions.
Our device couples directly to a 50-Ohm transmission line and can easily be scaled to a large number of transducers on a single chip.
- Score: 47.187609203210705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Microwave-to-optics transduction is emerging as a vital technology for
scaling quantum computers and quantum networks. To establish useful
entanglement links between qubit processing units, several key conditions have
to be simultaneously met: the transducer must add less than a single quantum of
input referred noise and operate with high-efficiency, as well as large
bandwidth and high repetition rate. Here we present a new design for an
integrated transducer based on a planar superconducting resonator coupled to a
silicon photonic cavity through a mechanical oscillator made of lithium niobate
on silicon. We experimentally demonstrate its unique performance and potential
for simultaneously realizing all of the above conditions, measuring added noise
that is limited to a few photons, transduction efficiencies as high as 0.9%,
with a bandwidth of 14.8 MHz and a repetition rate of up to 100 kHz. Our device
couples directly to a 50-Ohm transmission line and can easily be scaled to a
large number of transducers on a single chip, paving the way for distributed
quantum computing.
Related papers
- Quantum-enabled continuous microwave-to-optics frequency conversion [6.646547697436899]
A quantum interface between microwave and optical photons is essential for entangling remote superconducting quantum processors.
We present a platform that meets these criteria, utilizing a combination of electrostatic and optomechanical interactions in devices made entirely from crystalline silicon.
arXiv Detail & Related papers (2024-06-04T18:34:01Z) - Design of an ultra-low mode volume piezo-optomechanical quantum
transducer [0.41104099603771493]
Coherent transduction of quantum states from the microwave to the optical domain can play a key role in quantum networking and distributed quantum computing.
We present the design of a piezo-optomechanical device formed in a hybrid lithium niobate on silicon platform.
We estimate that this transducer can realize an intrinsic conversion efficiency of up to 35% with 0.5 added noise quanta when resonantly coupled to a superconducting transmon qubit and operated in pulsed mode at 10 kHz repetition rate.
arXiv Detail & Related papers (2023-03-07T05:56:16Z) - A quantum dot-based frequency multiplier [0.0]
We present a quantum dot-based radiofrequency multiplier operated at cryogenic temperatures.
We implement the multiplier in a multi-gate silicon nanowire transistor using two complementary device configurations.
Our results demonstrate a method for high-frequency conversion that could be readily integrated into silicon-based quantum computing systems.
arXiv Detail & Related papers (2022-11-25T14:09:30Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - High efficiency coherent microwave-to-optics conversion via off-resonant
scattering [5.639495736553396]
We report a coherent microwave-to-optics transduction using Rydberg atoms and off-resonant scattering technique.
The high conversion efficiency is maintained for microwave photons range from thousands to about 50.
arXiv Detail & Related papers (2022-03-08T16:09:12Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z) - Converting microwave and telecom photons with a silicon photonic
nanomechanical interface [0.0]
We demonstrate a fully integrated, coherent transducer connecting the microwave X and the telecom S bands.
The device is fabricated from CMOS compatible materials and achieves a V$_pi$ as low as 16 $mu$V for sub-watt pump powers.
Such power-efficient, ultra-sensitive and highly integrated hybrid interconnects might find applications ranging from quantum communication and RF receivers to magnetic resonance imaging.
arXiv Detail & Related papers (2020-02-26T17:10:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.