Semantic Security for Quantum Wiretap Channels
- URL: http://arxiv.org/abs/2001.05719v2
- Date: Wed, 16 Nov 2022 15:04:55 GMT
- Title: Semantic Security for Quantum Wiretap Channels
- Authors: Holger Boche, Minglai Cai, Christian Deppe, Roberto Ferrara, Moritz
Wiese
- Abstract summary: We consider the problem of semantic security via classical-quantum and quantum wiretap channels.
We use explicit constructions to transform a non-secure code into a semantically secure code, achieving capacity by means of biregular irreducible functions.
- Score: 68.24747267214373
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of semantic security via classical-quantum and
quantum wiretap channels and use explicit constructions to transform a
non-secure code into a semantically secure code, achieving capacity by means of
biregular irreducible functions. Explicit parameters in finite regimes can be
extracted from theorems. We also generalize the semantic security capacity
theorem, which shows that a strongly secure code guarantees a semantically
secure code with the same secrecy rate, to any quantum channel, including the
infinite-dimensional and non-Gaussian ones.
Related papers
- Quantum Indistinguishable Obfuscation via Quantum Circuit Equivalence [6.769315201275599]
Quantum computing solutions are increasingly deployed in commercial environments through delegated computing.
One of the most critical issues is to guarantee the confidentiality and proprietary of quantum implementations.
Since the proposal of general-purpose indistinguishability obfuscation (iO) and functional encryption schemes, iO has emerged as a seemingly versatile cryptography primitive.
arXiv Detail & Related papers (2024-11-19T07:37:24Z) - Quantum Token Obfuscation via Superposition [0.0]
As quantum computing advances, traditional cryptographic security measures, including token obfuscation, are increasingly vulnerable to quantum attacks.
This paper introduces a quantum-enhanced approach to token obfuscation leveraging quantum superposition and multi-basis verification.
Our experimental results demonstrate significant improvements in token security and robustness, validating this approach as a promising solution for quantum-secure cryptographic applications.
arXiv Detail & Related papers (2024-11-02T14:05:20Z) - Security Enhancement of Quantum Communication in Space-Air-Ground Integrated Networks [7.404591865944407]
Quantum teleportation achieves the transmission of quantum states through quantum channels.
We propose a practical solution that ensures secure information transmission even in the presence of errors in both classical and quantum channels.
arXiv Detail & Related papers (2024-10-22T14:27:21Z) - (Quantum) Indifferentiability and Pre-Computation [50.06591179629447]
Indifferentiability is a cryptographic paradigm for analyzing the security of ideal objects.
Despite its strength, indifferentiability is not known to offer security against pre-processing attacks.
We propose a strengthening of indifferentiability which is not only composable but also takes arbitrary pre-computation into account.
arXiv Detail & Related papers (2024-10-22T00:41:47Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - Semantic Security with Infinite Dimensional Quantum Eavesdropping Channel [1.5070870469725095]
We propose a new proof method for direct coding theorems for wiretap channels.
The method yields errors that decay exponentially with increasing block lengths.
It provides a guarantee of a quantum version of semantic security.
arXiv Detail & Related papers (2022-05-16T13:25:56Z) - Commitment capacity of classical-quantum channels [70.51146080031752]
We define various notions of commitment capacity for classical-quantum channels.
We prove matching upper and lower bound on it in terms of the conditional entropy.
arXiv Detail & Related papers (2022-01-17T10:41:50Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
We present a proof of the approximate Eastin-Knill theorem, which connects the quality of a quantum error-correcting code with its ability to achieve a universal set of logical gates.
Our derivation employs powerful bounds on the quantum Fisher information in generic quantum metrological protocols.
arXiv Detail & Related papers (2020-04-24T17:58:10Z) - Quantum-secure message authentication via blind-unforgeability [74.7729810207187]
We propose a natural definition of unforgeability against quantum adversaries called blind unforgeability.
This notion defines a function to be predictable if there exists an adversary who can use "partially blinded" access to predict values.
We show the suitability of blind unforgeability for supporting canonical constructions and reductions.
arXiv Detail & Related papers (2018-03-10T05:31:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.