Quantum Token Obfuscation via Superposition
- URL: http://arxiv.org/abs/2411.01252v1
- Date: Sat, 02 Nov 2024 14:05:20 GMT
- Title: Quantum Token Obfuscation via Superposition
- Authors: S. M. Yousuf Iqbal Tomal, Abdullah Al Shafin,
- Abstract summary: As quantum computing advances, traditional cryptographic security measures, including token obfuscation, are increasingly vulnerable to quantum attacks.
This paper introduces a quantum-enhanced approach to token obfuscation leveraging quantum superposition and multi-basis verification.
Our experimental results demonstrate significant improvements in token security and robustness, validating this approach as a promising solution for quantum-secure cryptographic applications.
- Score: 0.0
- License:
- Abstract: As quantum computing advances, traditional cryptographic security measures, including token obfuscation, are increasingly vulnerable to quantum attacks. This paper introduces a quantum-enhanced approach to token obfuscation leveraging quantum superposition and multi-basis verification to establish a robust defense against these threats. In our method, tokens are encoded in superposition states, making them simultaneously exist in multiple states until measured, thus enhancing obfuscation complexity. Multi-basis verification further secures these tokens by enforcing validation across multiple quantum bases, thwarting unauthorized access. Additionally, we incorporate a quantum decay protocol and a refresh mechanism to manage the token life-cycle securely. Our experimental results demonstrate significant improvements in token security and robustness, validating this approach as a promising solution for quantum-secure cryptographic applications. This work not only highlights the feasibility of quantum-based token obfuscation but also lays the foundation for future quantum-safe security architectures.
Related papers
- Quantum Indistinguishable Obfuscation via Quantum Circuit Equivalence [6.769315201275599]
Quantum computing solutions are increasingly deployed in commercial environments through delegated computing.
One of the most critical issues is to guarantee the confidentiality and proprietary of quantum implementations.
Since the proposal of general-purpose indistinguishability obfuscation (iO) and functional encryption schemes, iO has emerged as a seemingly versatile cryptography primitive.
arXiv Detail & Related papers (2024-11-19T07:37:24Z) - Quantum cryptography beyond key distribution: theory and experiment [0.7499722271664147]
This article surveys the theoretical and experimental developments in quantum cryptography beyond QKD.
It provides an intuitive classification of the main quantum primitives and their security levels, summarizes their possibilities and limits, and discusses their implementation with current photonic technology.
arXiv Detail & Related papers (2024-11-13T18:54:19Z) - Revocable Encryption, Programs, and More: The Case of Multi-Copy Security [48.53070281993869]
We show the feasibility of revocable primitives, such as revocable encryption and revocable programs.
This suggests that the stronger notion of multi-copy security is within reach in unclonable cryptography.
arXiv Detail & Related papers (2024-10-17T02:37:40Z) - Quantum Query Lower Bounds for Key Recovery Attacks on the Even-Mansour
Cipher [0.0]
Even-Mansour (EM) cipher is one of the famous constructions for a block cipher.
Kuwakado and Morii demonstrated that a quantum adversary can recover its $n$-bit secret keys only with $O(n)$ nonadaptive quantum queries.
arXiv Detail & Related papers (2023-08-21T02:01:30Z) - Deploying hybrid quantum-secured infrastructure for applications: When
quantum and post-quantum can work together [0.8702432681310401]
Quantum key distribution is secure against unforeseen technological developments.
Post-quantum cryptography is believed to be secure even against attacks with both classical and quantum computing technologies.
Various directions in the further development of the full-stack quantum-secured infrastructure are also indicated.
arXiv Detail & Related papers (2023-04-10T13:44:21Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - Quantum Proofs of Deletion for Learning with Errors [91.3755431537592]
We construct the first fully homomorphic encryption scheme with certified deletion.
Our main technical ingredient is an interactive protocol by which a quantum prover can convince a classical verifier that a sample from the Learning with Errors distribution in the form of a quantum state was deleted.
arXiv Detail & Related papers (2022-03-03T10:07:32Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Practical quantum tokens without quantum memories and experimental tests [0.15749416770494706]
'S-money' tokens do not require quantum memories or long distance quantum communication.
We describe implementations of S-money schemes with off-the-shelf quantum key distribution technology.
We show that, given standard assumptions in mistrustful quantum cryptographic implementations, unforgeability and user privacy could be guaranteed.
arXiv Detail & Related papers (2021-04-23T17:03:33Z) - Quantum Multi-Solution Bernoulli Search with Applications to Bitcoin's
Post-Quantum Security [67.06003361150228]
A proof of work (PoW) is an important cryptographic construct enabling a party to convince others that they invested some effort in solving a computational task.
In this work, we examine the hardness of finding such chain of PoWs against quantum strategies.
We prove that the chain of PoWs problem reduces to a problem we call multi-solution Bernoulli search, for which we establish its quantum query complexity.
arXiv Detail & Related papers (2020-12-30T18:03:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.