Inferring Individual Level Causal Models from Graph-based Relational
Time Series
- URL: http://arxiv.org/abs/2001.05993v3
- Date: Thu, 23 Jan 2020 22:14:30 GMT
- Title: Inferring Individual Level Causal Models from Graph-based Relational
Time Series
- Authors: Ryan Rossi, Somdeb Sarkhel, Nesreen Ahmed
- Abstract summary: We formalize the problem of causal inference over graph-based relational time-series data.
We propose causal inference models that leverage both the graph topology and time-series to accurately estimate local causal effects of nodes.
- Score: 3.332377849866735
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we formalize the problem of causal inference over graph-based
relational time-series data where each node in the graph has one or more
time-series associated to it. We propose causal inference models for this
problem that leverage both the graph topology and time-series to accurately
estimate local causal effects of nodes. Furthermore, the relational time-series
causal inference models are able to estimate local effects for individual nodes
by exploiting local node-centric temporal dependencies and
topological/structural dependencies. We show that simpler causal models that do
not consider the graph topology are recovered as special cases of the proposed
relational time-series causal inference model. We describe the conditions under
which the resulting estimate can be used to estimate a causal effect, and
describe how the Durbin-Wu-Hausman test of specification can be used to test
for the consistency of the proposed estimator from data. Empirically, we
demonstrate the effectiveness of the causal inference models on both synthetic
data with known ground-truth and a large-scale observational relational
time-series data set collected from Wikipedia.
Related papers
- Graph-based Complexity for Causal Effect by Empirical Plug-in [56.14597641617531]
This paper focuses on the computational complexity of computing empirical plug-in estimates for causal effect queries.
We show that computation can be done efficiently, potentially in time linear in the data size, depending on the estimand's hypergraph.
arXiv Detail & Related papers (2024-11-15T07:42:01Z) - Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
We propose an alternative paradigm for answering causal-effect queries over discrete observable variables.
We learn the causal Bayesian network and its confounding latent variables directly from the observational data.
We show that this emphmodel completion learning approach can be more effective than estimand approaches.
arXiv Detail & Related papers (2024-08-26T08:39:09Z) - Causal Discovery from Time-Series Data with Short-Term Invariance-Based Convolutional Neural Networks [12.784885649573994]
Causal discovery from time-series data aims to capture both intra-slice (contemporaneous) and inter-slice (time-lagged) causality.
We propose a novel gradient-based causal discovery approach STIC, which focuses on textbfShort-textbfTerm textbfInvariance using textbfConvolutional neural networks.
arXiv Detail & Related papers (2024-08-15T08:43:28Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
Temporally causal representation learning aims to identify the latent causal process from time series observations.
Most methods require the assumption that the latent causal processes do not have instantaneous relations.
We propose an textbfIDentification framework for instantanetextbfOus textbfLatent dynamics.
arXiv Detail & Related papers (2024-05-24T08:08:05Z) - Discovering Mixtures of Structural Causal Models from Time Series Data [23.18511951330646]
We propose a general variational inference-based framework called MCD to infer the underlying causal models.
Our approach employs an end-to-end training process that maximizes an evidence-lower bound for the data likelihood.
We demonstrate that our method surpasses state-of-the-art benchmarks in causal discovery tasks.
arXiv Detail & Related papers (2023-10-10T05:13:10Z) - CausalTime: Realistically Generated Time-series for Benchmarking of
Causal Discovery [14.092834149864514]
This study introduces the CausalTime pipeline to generate time-series that highly resemble the real data.
The pipeline starts from real observations in a specific scenario and produces a matching benchmark dataset.
In the experiments, we validate the fidelity of the generated data through qualitative and quantitative experiments, followed by a benchmarking of existing TSCD algorithms.
arXiv Detail & Related papers (2023-10-03T02:29:19Z) - From Temporal to Contemporaneous Iterative Causal Discovery in the
Presence of Latent Confounders [6.365889364810238]
We present a constraint-based algorithm for learning causal structures from observational time-series data.
We assume a discrete-time, stationary structural vector autoregressive process, with both temporal and contemporaneous causal relations.
The presented algorithm gradually refines a causal graph by learning long-term temporal relations before short-term ones, where contemporaneous relations are learned last.
arXiv Detail & Related papers (2023-06-01T12:46:06Z) - Causal Expectation-Maximisation [70.45873402967297]
We show that causal inference is NP-hard even in models characterised by polytree-shaped graphs.
We introduce the causal EM algorithm to reconstruct the uncertainty about the latent variables from data about categorical manifest variables.
We argue that there appears to be an unnoticed limitation to the trending idea that counterfactual bounds can often be computed without knowledge of the structural equations.
arXiv Detail & Related papers (2020-11-04T10:25:13Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
Causal inferences can be obtained by standard algorithms for the updating of credal nets.
This contribution should be regarded as a systematic approach to represent structural causal models by credal networks.
Experiments show that approximate algorithms for credal networks can immediately be used to do causal inference in real-size problems.
arXiv Detail & Related papers (2020-08-02T11:19:36Z) - Amortized Causal Discovery: Learning to Infer Causal Graphs from
Time-Series Data [63.15776078733762]
We propose Amortized Causal Discovery, a novel framework to learn to infer causal relations from time-series data.
We demonstrate experimentally that this approach, implemented as a variational model, leads to significant improvements in causal discovery performance.
arXiv Detail & Related papers (2020-06-18T19:59:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.