Estimating Causal Effects from Learned Causal Networks
- URL: http://arxiv.org/abs/2408.14101v2
- Date: Tue, 27 Aug 2024 09:54:04 GMT
- Title: Estimating Causal Effects from Learned Causal Networks
- Authors: Anna Raichev, Alexander Ihler, Jin Tian, Rina Dechter,
- Abstract summary: We propose an alternative paradigm for answering causal-effect queries over discrete observable variables.
We learn the causal Bayesian network and its confounding latent variables directly from the observational data.
We show that this emphmodel completion learning approach can be more effective than estimand approaches.
- Score: 56.14597641617531
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The standard approach to answering an identifiable causal-effect query (e.g., $P(Y|do(X)$) when given a causal diagram and observational data is to first generate an estimand, or probabilistic expression over the observable variables, which is then evaluated using the observational data. In this paper, we propose an alternative paradigm for answering causal-effect queries over discrete observable variables. We propose to instead learn the causal Bayesian network and its confounding latent variables directly from the observational data. Then, efficient probabilistic graphical model (PGM) algorithms can be applied to the learned model to answer queries. Perhaps surprisingly, we show that this \emph{model completion} learning approach can be more effective than estimand approaches, particularly for larger models in which the estimand expressions become computationally difficult. We illustrate our method's potential using a benchmark collection of Bayesian networks and synthetically generated causal models.
Related papers
- Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand [9.460857822923842]
Causal inference from observational data plays critical role in many applications in trustworthy machine learning.
We show how to sample from any identifiable interventional distribution given an arbitrary causal graph.
We also generate high-dimensional interventional samples from the MIMIC-CXR dataset involving text and image variables.
arXiv Detail & Related papers (2024-02-12T05:48:31Z) - Sample, estimate, aggregate: A recipe for causal discovery foundation models [28.116832159265964]
We train a supervised model that learns to predict a larger causal graph from the outputs of classical causal discovery algorithms run over subsets of variables.
Our approach is enabled by the observation that typical errors in the outputs of classical methods remain comparable across datasets.
Experiments on real and synthetic data demonstrate that this model maintains high accuracy in the face of misspecification or distribution shift.
arXiv Detail & Related papers (2024-02-02T21:57:58Z) - Likelihood-Based Methods Improve Parameter Estimation in Opinion
Dynamics Models [6.138671548064356]
We show that a maximum likelihood approach for parameter estimation in agent-based models (ABMs) of opinion dynamics outperforms the typical simulation-based approach.
In contrast, likelihood-based approaches derive a likelihood function that connects the unknown parameters to the observed data in a statistically principled way.
Our experimental results show that the maximum likelihood estimates are up to 4x more accurate and require up to 200x less computational time.
arXiv Detail & Related papers (2023-10-04T12:29:37Z) - Generalizing Backpropagation for Gradient-Based Interpretability [103.2998254573497]
We show that the gradient of a model is a special case of a more general formulation using semirings.
This observation allows us to generalize the backpropagation algorithm to efficiently compute other interpretable statistics.
arXiv Detail & Related papers (2023-07-06T15:19:53Z) - Diffusion Causal Models for Counterfactual Estimation [18.438307666925425]
We consider the task of counterfactual estimation from observational imaging data given a known causal structure.
We propose Diff-SCM, a deep structural causal model that builds on recent advances of generative energy-based models.
We find that Diff-SCM produces more realistic and minimal counterfactuals than baselines on MNIST data and can also be applied to ImageNet data.
arXiv Detail & Related papers (2022-02-21T12:23:01Z) - Causal Collaborative Filtering [50.22155187512759]
Causal Collaborative Filtering is a framework for modeling causality in collaborative filtering and recommendation.
We show that many traditional CF algorithms are actually special cases of CCF under simplified causal graphs.
We propose a conditional intervention approach for $do$-operations so that we can estimate the user-item causal preference.
arXiv Detail & Related papers (2021-02-03T04:16:11Z) - Explaining and Improving Model Behavior with k Nearest Neighbor
Representations [107.24850861390196]
We propose using k nearest neighbor representations to identify training examples responsible for a model's predictions.
We show that kNN representations are effective at uncovering learned spurious associations.
Our results indicate that the kNN approach makes the finetuned model more robust to adversarial inputs.
arXiv Detail & Related papers (2020-10-18T16:55:25Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
Causal inferences can be obtained by standard algorithms for the updating of credal nets.
This contribution should be regarded as a systematic approach to represent structural causal models by credal networks.
Experiments show that approximate algorithms for credal networks can immediately be used to do causal inference in real-size problems.
arXiv Detail & Related papers (2020-08-02T11:19:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.