Quantum decoherence by Coulomb interaction
- URL: http://arxiv.org/abs/2001.06154v1
- Date: Fri, 17 Jan 2020 04:11:44 GMT
- Title: Quantum decoherence by Coulomb interaction
- Authors: Nicole Kerker, Robin R\"opke, Lea-Marina Steinert, Andreas Pooch and
Alexander Stibor
- Abstract summary: We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
- Score: 58.720142291102135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The performance of modern quantum devices in communication, metrology or
microscopy relies on the quantum-classical interaction which is generally
described by the theory of decoherence. Despite the high relevance for long
coherence times in quantum electronics, decoherence mechanisms mediated by the
Coulomb force are not well understood yet and several competing theoretical
models exist. Here, we present an experimental study of the Coulomb-induced
decoherence of free electrons in a superposition state in a biprism electron
interferometer close to a semiconducting and metallic surface. The decoherence
was determined through a contrast loss at different beam path separations,
surface distances and conductibilities. To clarify the current literature
discussion, four theoretical models were compared to our data. We could rule
out three of them and got good agreement with a theory based on macroscopic
quantum electrodynamics. The results will enable the determination and
minimization of specific decoherence channels in the design of novel quantum
instruments.
Related papers
- A Cooper-pair beam splitter as a feasible source of entangled electrons [0.0]
We investigate the generation of an entangled electron pair emerging from a system composed of two quantum dots attached to a superconductor Cooper pair beam splitter.
We take into account three processes: Crossed Andreev Reflection, cotuneling, and Coulomb interaction.
Several entanglement quantifiers, including quantum mutual information, negativity, and concurrence, are employed to validate our findings.
arXiv Detail & Related papers (2024-01-29T18:46:53Z) - Coulomb interaction-driven entanglement of electrons on helium [0.0]
We theoretically investigate the generation of emphmotional entanglement between two electrons via their unscreened Coulomb interaction.
We compute the motional energy spectra of the electrons, as well as their entanglement, by diagonalizing the model Hamiltonian with respect to a single-particle Hartree product basis.
In particular, the theoretical tools developed here can be used for fine tuning and optimization of control parameters in future experiments with electrons trapped above the surface of superfluid helium or solid neon.
arXiv Detail & Related papers (2023-10-07T21:40:20Z) - Quantum field theory for multipolar composite bosons with mass defect and relativistic corrections [0.10686401485328585]
We present a subspace effective field theory for interacting, spin carrying, and possibly charged ensembles of atoms composed of nucleus and electron.
We obtain a relativistic coupling between the coboson's center-of-mass motion and internal structure encoded by the mass defect.
arXiv Detail & Related papers (2023-07-12T12:35:27Z) - Quantum decoherence of free electrons and interaction with distant
objects [0.0]
macroscopic correlations involving macroscopic distances can be observed between entangled photons as well as in atomic gases and matter waves at low temperatures.
We reveal a manifestation of quantum mechanics that involves macroscopic distances and results in a nearly complete depletion of coherence.
Our results suggest an approach to measuring the vacuum temperature and nondestructively sensing the presence of distant objects.
arXiv Detail & Related papers (2023-06-20T15:13:51Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Quantum interaction of sub-relativistic aloof electrons with mesoscopic
samples [91.3755431537592]
Relativistic electrons experience very slight wave packet distortion and negligible momentum recoil when interacting with nanometer-sized samples.
Modelling fast electrons as classical point-charges provides extremely accurate theoretical predictions of energy-loss spectra.
arXiv Detail & Related papers (2022-11-14T15:22:37Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z) - Weak-to-Strong Light-Matter Coupling and Dissipative Dynamics from First
Principles [0.0]
We generalize ab initio quantum-electrodynamical density functional theory to account for dissipative dynamics.
We study excited-state dynamics and spectral responses of benzene and toluene under weak-to-strong light-matter coupling.
arXiv Detail & Related papers (2020-02-24T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.