Quantum interaction of sub-relativistic aloof electrons with mesoscopic
samples
- URL: http://arxiv.org/abs/2211.07448v1
- Date: Mon, 14 Nov 2022 15:22:37 GMT
- Title: Quantum interaction of sub-relativistic aloof electrons with mesoscopic
samples
- Authors: Alessandro Ciattoni
- Abstract summary: Relativistic electrons experience very slight wave packet distortion and negligible momentum recoil when interacting with nanometer-sized samples.
Modelling fast electrons as classical point-charges provides extremely accurate theoretical predictions of energy-loss spectra.
- Score: 91.3755431537592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Relativistic electrons experience very slight wave packet distortion and
negligible momentum recoil when interacting with nanometer-sized samples, as a
consequence of the ultra-short interaction time. Accordingly, modeling fast
electrons as classical point-charges provides extremely accurate theoretical
predictions of energy-loss spectra. Here we investigate the aloof interaction
of nanometer-sized electron beams of few keV with micron-sized samples, a
regime where the classical description generally fails due to significant
wavefunction broadening and momentum recoil. To cope with these effects, we use
macroscopic quantum electrodynamics to analytically derive a generalized
expression for the electron energy loss probability which accounts for recoil.
Quantum features of the interaction are shown to get dramatically strong as the
interaction length is increased and/or the electron kinetic energy is
decreased. Moreover, relatively large values of the energy loss probability are
found at higher energy losses and larger impact parameters, a marked quantum
effect which is classically forbidden by the evanescent profile of the field
produced by a moving point-charge.
Related papers
- Tailoring coherent charge transport in graphene by deterministic defect generation [36.136619420474766]
We introduce lattice defects in graphene that enable phase-matched charge carrier waves.
Multiple electronic Fabry-Perot cavities are formed by creating periodically alternating defective and pristine nano-stripes.
Defective stripes behave as partially reflecting mirrors and resonantly confine the charge carrier waves within the pristine areas, giving rise to Fabry-Perot resonant modes.
These coherent phenomena survive up to 30 K for both polarities of charge carriers, contrarily to traditional monopolar electrostatically created Fabry-Perot interferometers.
arXiv Detail & Related papers (2024-09-07T15:37:23Z) - Maximal quantum interaction between free electrons and photons [18.53651187347193]
Free-electron quantum optics enables electron-photon entanglement and holds the potential for generating nontrivial photon states.
We derive an upper limit to the quantum vacuum interaction strength between free electrons and single-mode photons, which illuminates the conditions for the strongest interaction.
We validate the limit by analytical and numerical calculations on canonical geometries and provide near-optimal designs indicating the feasibility of strong quantum interactions.
arXiv Detail & Related papers (2024-03-30T14:11:00Z) - Relativistic single-electron wavepacket in quantum electromagnetic fields: Quantum coherence, correlations, and the Unruh effect [0.0]
We present a linearized effective theory using a Gaussian wavepacket description of a charged relativistic particle coupled to quantum electromagnetic fields.
We address the issues of decoherence of flying electrons in free space and the impact of Unruh effect on the electrons.
For a single electron accelerated in a uniform electric field, we identify the Unruh effect in the two-point correlators of the deviations from the electron's classical trajectory.
arXiv Detail & Related papers (2024-01-27T13:23:44Z) - Deterministic Quantum Field Trajectories and Macroscopic Effects [0.0]
The root to macroscopic quantum effects is revealed based on the quasiparticle model of collective excitations in an arbitrary degenerate electron gas.
It is remarked that any quantum many body system composed of large number of interacting particles acts as a dual arm device controlling the microscopic single particle effects with one hand and the macroscopic phenomena with the other.
arXiv Detail & Related papers (2023-11-16T06:23:09Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Inelastic Electron Scattering at a Single-Beam Structured Light Wave [0.0]
We demonstrate the inelastic scattering of slow-electron wavepackets at a propagating Hermite-Gaussian light beam.
This effect opens up a new platform for manipulating the electron wavepacket by utilizing the vast landscape of structured electromagnetic fields.
arXiv Detail & Related papers (2022-12-20T14:04:22Z) - Self-trapping of slow electrons in the energy domain [0.0]
We show that slow electrons are subject to strong confinement in the energy domain due to the non-vanishing curvature of the electron dispersion.
The spectral trap is tunable and an appropriate choice of light field parameters can reduce the interaction dynamics to only two energy states.
arXiv Detail & Related papers (2022-09-29T15:07:11Z) - Free-Electron Shaping Using Quantum Light [0.0]
Here, we show that control over electron pulse shaping, compression, and statistics can be improved by replacing coherent laser excitation by interaction with quantum light.
We find that compression is accelerated for fixed optical intensity by using phase-squeezed light, while amplitude squeezing produces ultrashort double-pulse profiles.
The generated electron pulses exhibit periodic revivals in complete analogy to the optical Talbot effect.
arXiv Detail & Related papers (2020-08-03T15:35:43Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z) - Waveguide Quantum Electrodynamics with Giant Superconducting Artificial
Atoms [40.456646238780195]
We employ an alternative architecture that realizes a giant atom by coupling small atoms to a waveguide at multiple, but well separated, discrete locations.
Our realization of giant atoms enables tunable atom-waveguide couplings with large on-off ratios and a coupling spectrum that can be engineered by device design.
arXiv Detail & Related papers (2019-12-27T16:45:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.