Trust in AutoML: Exploring Information Needs for Establishing Trust in
Automated Machine Learning Systems
- URL: http://arxiv.org/abs/2001.06509v1
- Date: Fri, 17 Jan 2020 19:50:54 GMT
- Title: Trust in AutoML: Exploring Information Needs for Establishing Trust in
Automated Machine Learning Systems
- Authors: Jaimie Drozdal, Justin Weisz, Dakuo Wang, Gaurav Dass, Bingsheng Yao,
Changruo Zhao, Michael Muller, Lin Ju, Hui Su
- Abstract summary: We report results from three studies to understand the information needs of data scientists for establishing trust in AutoML systems.
We find that model performance metrics and visualizations are the most important information to data scientists when establishing their trust with an AutoML tool.
- Score: 30.385703521998014
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore trust in a relatively new area of data science: Automated Machine
Learning (AutoML). In AutoML, AI methods are used to generate and optimize
machine learning models by automatically engineering features, selecting
models, and optimizing hyperparameters. In this paper, we seek to understand
what kinds of information influence data scientists' trust in the models
produced by AutoML? We operationalize trust as a willingness to deploy a model
produced using automated methods. We report results from three studies --
qualitative interviews, a controlled experiment, and a card-sorting task -- to
understand the information needs of data scientists for establishing trust in
AutoML systems. We find that including transparency features in an AutoML tool
increased user trust and understandability in the tool; and out of all proposed
features, model performance metrics and visualizations are the most important
information to data scientists when establishing their trust with an AutoML
tool.
Related papers
- AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
Automated machine learning (AutoML) accelerates AI development by automating tasks in the development pipeline.
Recent works have started exploiting large language models (LLM) to lessen such burden.
This paper proposes AutoML-Agent, a novel multi-agent framework tailored for full-pipeline AutoML.
arXiv Detail & Related papers (2024-10-03T20:01:09Z) - Position: A Call to Action for a Human-Centered AutoML Paradigm [83.78883610871867]
Automated machine learning (AutoML) was formed around the fundamental objectives of automatically and efficiently configuring machine learning (ML)
We argue that a key to unlocking AutoML's full potential lies in addressing the currently underexplored aspect of user interaction with AutoML systems.
arXiv Detail & Related papers (2024-06-05T15:05:24Z) - AutoAct: Automatic Agent Learning from Scratch for QA via Self-Planning [54.47116888545878]
AutoAct is an automatic agent learning framework for QA.
It does not rely on large-scale annotated data and synthetic planning trajectories from closed-source models.
arXiv Detail & Related papers (2024-01-10T16:57:24Z) - Democratize with Care: The need for fairness specific features in
user-interface based open source AutoML tools [0.0]
Automated Machine Learning (AutoML) streamlines the machine learning model development process.
This democratization allows more users (including non-experts) to access and utilize state-of-the-art machine-learning expertise.
However, AutoML tools may also propagate bias in the way these tools handle the data, model choices, and optimization approaches adopted.
arXiv Detail & Related papers (2023-12-16T19:54:00Z) - Assessing the Use of AutoML for Data-Driven Software Engineering [10.40771687966477]
AutoML promises to automate the building of end-to-end AI/ML pipelines.
Despite the growing interest and high expectations, there is a dearth of information about the extent to which AutoML is currently adopted.
arXiv Detail & Related papers (2023-07-20T11:14:24Z) - AutoML-GPT: Automatic Machine Learning with GPT [74.30699827690596]
We propose developing task-oriented prompts and automatically utilizing large language models (LLMs) to automate the training pipeline.
We present the AutoML-GPT, which employs GPT as the bridge to diverse AI models and dynamically trains models with optimized hyper parameters.
This approach achieves remarkable results in computer vision, natural language processing, and other challenging areas.
arXiv Detail & Related papers (2023-05-04T02:09:43Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
We show the possibility of substituting manually created ML pipelines with automated machine learning (AutoML) solutions.
Based on the CRISP-DM process, we split the manual ML pipeline into a machine learning and non-machine learning part.
We show in a case study for the industrial use case of price forecasting, that domain knowledge combined with AutoML can weaken the dependence on ML experts.
arXiv Detail & Related papers (2023-04-28T10:27:38Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
We introduce OmniForce, a human-centered AutoML system that yields both human-assisted ML and ML-assisted human techniques.
We show how OmniForce can put an AutoML system into practice and build adaptive AI in open-environment scenarios.
arXiv Detail & Related papers (2023-03-01T13:35:22Z) - Man versus Machine: AutoML and Human Experts' Role in Phishing Detection [4.124446337711138]
This paper compares the performances of six well-known, state-of-the-art AutoML frameworks on ten different phishing datasets.
Our results indicate that AutoML-based models are able to outperform manually developed machine learning models in complex classification tasks.
arXiv Detail & Related papers (2021-08-27T09:26:20Z) - A Neophyte With AutoML: Evaluating the Promises of Automatic Machine
Learning Tools [1.713291434132985]
This paper discusses modern Auto Machine Learning (AutoML) tools from the perspective of a person with little prior experience in Machine Learning (ML)
There are many AutoML tools both ready-to-use and under development, which are created to simplify and democratize usage of ML technologies in everyday life.
arXiv Detail & Related papers (2021-01-14T19:28:57Z) - AutoDS: Towards Human-Centered Automation of Data Science [20.859067294445985]
This paper introduces AutoDS, an automated machine learning (AutoML) system to support data science projects.
As expected, AutoDS improves productivity; Yet surprisingly, we find that the models produced by the AutoDS group have higher quality and less errors, but lower human confidence scores.
arXiv Detail & Related papers (2021-01-13T08:35:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.