OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System
- URL: http://arxiv.org/abs/2303.00501v2
- Date: Sat, 8 Jul 2023 16:50:22 GMT
- Title: OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System
- Authors: Chao Xue, Wei Liu, Shuai Xie, Zhenfang Wang, Jiaxing Li, Xuyang Peng,
Liang Ding, Shanshan Zhao, Qiong Cao, Yibo Yang, Fengxiang He, Bohua Cai,
Rongcheng Bian, Yiyan Zhao, Heliang Zheng, Xiangyang Liu, Dongkai Liu, Daqing
Liu, Li Shen, Chang Li, Shijin Zhang, Yukang Zhang, Guanpu Chen, Shixiang
Chen, Yibing Zhan, Jing Zhang, Chaoyue Wang, Dacheng Tao
- Abstract summary: We introduce OmniForce, a human-centered AutoML system that yields both human-assisted ML and ML-assisted human techniques.
We show how OmniForce can put an AutoML system into practice and build adaptive AI in open-environment scenarios.
- Score: 85.8338446357469
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated machine learning (AutoML) seeks to build ML models with minimal
human effort. While considerable research has been conducted in the area of
AutoML in general, aiming to take humans out of the loop when building
artificial intelligence (AI) applications, scant literature has focused on how
AutoML works well in open-environment scenarios such as the process of training
and updating large models, industrial supply chains or the industrial
metaverse, where people often face open-loop problems during the search
process: they must continuously collect data, update data and models, satisfy
the requirements of the development and deployment environment, support massive
devices, modify evaluation metrics, etc. Addressing the open-environment issue
with pure data-driven approaches requires considerable data, computing
resources, and effort from dedicated data engineers, making current AutoML
systems and platforms inefficient and computationally intractable.
Human-computer interaction is a practical and feasible way to tackle the
problem of open-environment AI. In this paper, we introduce OmniForce, a
human-centered AutoML (HAML) system that yields both human-assisted ML and
ML-assisted human techniques, to put an AutoML system into practice and build
adaptive AI in open-environment scenarios. Specifically, we present OmniForce
in terms of ML version management; pipeline-driven development and deployment
collaborations; a flexible search strategy framework; and widely provisioned
and crowdsourced application algorithms, including large models. Furthermore,
the (large) models constructed by OmniForce can be automatically turned into
remote services in a few minutes; this process is dubbed model as a service
(MaaS). Experimental results obtained in multiple search spaces and real-world
use cases demonstrate the efficacy and efficiency of OmniForce.
Related papers
- AutoFLUKA: A Large Language Model Based Framework for Automating Monte Carlo Simulations in FLUKA [6.571041942559539]
Monte Carlo (MC) simulations are essential for replicating real-world scenarios across scientific and engineering fields.
Despite the robustness and versatility, FLUKA faces significant limitations in automation and integration with external post-processing tools.
This study explores the potential of Large Language Models (LLMs) and AI agents to address these limitations.
We introduce AutoFLUKA, an AI agent application developed using the LangChain Python Framework to automate typical MC simulation in FLUKA.
arXiv Detail & Related papers (2024-10-19T21:50:11Z) - AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
Automated machine learning (AutoML) accelerates AI development by automating tasks in the development pipeline.
Recent works have started exploiting large language models (LLM) to lessen such burden.
This paper proposes AutoML-Agent, a novel multi-agent framework tailored for full-pipeline AutoML.
arXiv Detail & Related papers (2024-10-03T20:01:09Z) - Position: A Call to Action for a Human-Centered AutoML Paradigm [83.78883610871867]
Automated machine learning (AutoML) was formed around the fundamental objectives of automatically and efficiently configuring machine learning (ML)
We argue that a key to unlocking AutoML's full potential lies in addressing the currently underexplored aspect of user interaction with AutoML systems.
arXiv Detail & Related papers (2024-06-05T15:05:24Z) - Assessing the Use of AutoML for Data-Driven Software Engineering [10.40771687966477]
AutoML promises to automate the building of end-to-end AI/ML pipelines.
Despite the growing interest and high expectations, there is a dearth of information about the extent to which AutoML is currently adopted.
arXiv Detail & Related papers (2023-07-20T11:14:24Z) - AutoML-GPT: Automatic Machine Learning with GPT [74.30699827690596]
We propose developing task-oriented prompts and automatically utilizing large language models (LLMs) to automate the training pipeline.
We present the AutoML-GPT, which employs GPT as the bridge to diverse AI models and dynamically trains models with optimized hyper parameters.
This approach achieves remarkable results in computer vision, natural language processing, and other challenging areas.
arXiv Detail & Related papers (2023-05-04T02:09:43Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
We show the possibility of substituting manually created ML pipelines with automated machine learning (AutoML) solutions.
Based on the CRISP-DM process, we split the manual ML pipeline into a machine learning and non-machine learning part.
We show in a case study for the industrial use case of price forecasting, that domain knowledge combined with AutoML can weaken the dependence on ML experts.
arXiv Detail & Related papers (2023-04-28T10:27:38Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.