Evolutionary Neural Architecture Search for Retinal Vessel Segmentation
- URL: http://arxiv.org/abs/2001.06678v3
- Date: Wed, 18 Mar 2020 05:58:25 GMT
- Title: Evolutionary Neural Architecture Search for Retinal Vessel Segmentation
- Authors: Zhun Fan, Jiahong Wei, Guijie Zhu, Jiajie Mo, Wenji Li
- Abstract summary: We propose novel approach which applies neural architecture search (NAS) to optimize an encoder-decoder architecture for retinal vessel segmentation.
A modified evolutionary algorithm is used to evolve the architectures of encoder-decoder framework with limited computing resources.
The results of cross-training show that the evolved model is with considerable scalability, which indicates a great potential for clinical disease diagnosis.
- Score: 2.0159253466233222
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The accurate retinal vessel segmentation (RVS) is of great significance to
assist doctors in the diagnosis of ophthalmology diseases and other systemic
diseases. Manually designing a valid neural network architecture for retinal
vessel segmentation requires high expertise and a large workload. In order to
improve the performance of vessel segmentation and reduce the workload of
manually designing neural network, we propose novel approach which applies
neural architecture search (NAS) to optimize an encoder-decoder architecture
for retinal vessel segmentation. A modified evolutionary algorithm is used to
evolve the architectures of encoder-decoder framework with limited computing
resources. The evolved model obtained by the proposed approach achieves top
performance among all compared methods on the three datasets, namely DRIVE,
STARE and CHASE_DB1, but with much fewer parameters. Moreover, the results of
cross-training show that the evolved model is with considerable scalability,
which indicates a great potential for clinical disease diagnosis.
Related papers
- LoRKD: Low-Rank Knowledge Decomposition for Medical Foundation Models [59.961172635689664]
"Knowledge Decomposition" aims to improve the performance on specific medical tasks.
We propose a novel framework named Low-Rank Knowledge Decomposition (LoRKD)
LoRKD explicitly separates gradients from different tasks by incorporating low-rank expert modules and efficient knowledge separation convolution.
arXiv Detail & Related papers (2024-09-29T03:56:21Z) - MambaClinix: Hierarchical Gated Convolution and Mamba-Based U-Net for Enhanced 3D Medical Image Segmentation [6.673169053236727]
We propose MambaClinix, a novel U-shaped architecture for medical image segmentation.
MambaClinix integrates a hierarchical gated convolutional network with Mamba in an adaptive stage-wise framework.
Our results show that MambaClinix achieves high segmentation accuracy while maintaining low model complexity.
arXiv Detail & Related papers (2024-09-19T07:51:14Z) - AD-NEv++ : The multi-architecture neuroevolution-based multivariate anomaly detection framework [0.794682109939797]
Anomaly detection tools and methods enable key analytical capabilities in modern cyberphysical and sensor-based systems.
We propose AD-NEv++, a three-stage neuroevolution-based method that synergically combines subspace evolution, model evolution, and fine-tuning.
We show that AD-NEv++ can improve and outperform the state-of-the-art GNN (Graph Neural Networks) model architecture in all anomaly detection benchmarks.
arXiv Detail & Related papers (2024-03-25T08:40:58Z) - Leveraging Frequency Domain Learning in 3D Vessel Segmentation [50.54833091336862]
In this study, we leverage Fourier domain learning as a substitute for multi-scale convolutional kernels in 3D hierarchical segmentation models.
We show that our novel network achieves remarkable dice performance (84.37% on ASACA500 and 80.32% on ImageCAS) in tubular vessel segmentation tasks.
arXiv Detail & Related papers (2024-01-11T19:07:58Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - HKNAS: Classification of Hyperspectral Imagery Based on Hyper Kernel
Neural Architecture Search [104.45426861115972]
We propose to directly generate structural parameters by utilizing the specifically designed hyper kernels.
We obtain three kinds of networks to separately conduct pixel-level or image-level classifications with 1-D or 3-D convolutions.
A series of experiments on six public datasets demonstrate that the proposed methods achieve state-of-the-art results.
arXiv Detail & Related papers (2023-04-23T17:27:40Z) - Contextual Information Enhanced Convolutional Neural Networks for
Retinal Vessel Segmentation in Color Fundus Images [0.0]
An automatic retinal vessel segmentation system can effectively facilitate clinical diagnosis and ophthalmological research.
A deep learning based method has been proposed and several customized modules have been integrated into the well-known encoder-decoder architecture U-net.
As a result, the proposed method outperforms the work of predecessors and achieves state-of-the-art performance in Sensitivity/Recall, F1-score and MCC.
arXiv Detail & Related papers (2021-03-25T06:10:47Z) - Genetic U-Net: Automatically Designed Deep Networks for Retinal Vessel
Segmentation Using a Genetic Algorithm [2.6629444004809826]
Genetic U-Net is proposed to generate a U-shaped convolutional neural network (CNN) that can achieve better retinal vessel segmentation but with fewer architecture-based parameters.
The experimental results show that the architecture obtained using the proposed method offered a superior performance with less than 1% of the number of the original U-Net parameters in particular.
arXiv Detail & Related papers (2020-10-29T13:31:36Z) - Searching Learning Strategy with Reinforcement Learning for 3D Medical
Image Segmentation [15.059891142682117]
We propose an automated searching approach for the optimal training strategy with reinforcement learning.
The proposed approach is validated on several tasks of 3D medical image segmentation.
arXiv Detail & Related papers (2020-06-10T14:24:06Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
We employ an auto-encoder to discover meaningful representations of neural architectures.
A graph convolutional neural network is introduced to predict the performance of architectures.
arXiv Detail & Related papers (2020-05-14T09:02:33Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.