Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks
- URL: http://arxiv.org/abs/2004.01582v1
- Date: Fri, 3 Apr 2020 14:07:41 GMT
- Title: Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks
- Authors: Alexander Ding, Qilei Chen, Yu Cao, Benyuan Liu
- Abstract summary: Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
- Score: 68.96150598294072
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting
premature infants with lower weights. It causes proliferation of vessels in the
retina and could result in vision loss and, eventually, retinal detachment,
leading to blindness. While human experts can easily identify severe stages of
ROP, the diagnosis of earlier stages, which are the most relevant to
determining treatment choice, are much more affected by variability in
subjective interpretations of human experts. In recent years, there has been a
significant effort to automate the diagnosis using deep learning. This paper
builds upon the success of previous models and develops a novel architecture,
which combines object segmentation and convolutional neural networks (CNN) to
construct an effective classifier of ROP stages 1-3 based on neonatal retinal
images. Motivated by the fact that the formation and shape of a demarcation
line in the retina is the distinguishing feature between earlier ROP stages,
our proposed system first trains an object segmentation model to identify the
demarcation line at a pixel level and adds the resulting mask as an additional
"color" channel in the original image. Then, the system trains a CNN classifier
based on the processed images to leverage information from both the original
image and the mask, which helps direct the model's attention to the demarcation
line. In a number of careful experiments comparing its performance to previous
object segmentation systems and CNN-only systems trained on our dataset, our
novel architecture significantly outperforms previous systems in accuracy,
demonstrating the effectiveness of our proposed pipeline.
Related papers
- Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Synthetic optical coherence tomography angiographs for detailed retinal
vessel segmentation without human annotations [12.571349114534597]
We present a lightweight simulation of the retinal vascular network based on space colonization for faster and more realistic OCTA synthesis.
We demonstrate the superior segmentation performance of our approach in extensive quantitative and qualitative experiments on three public datasets.
arXiv Detail & Related papers (2023-06-19T14:01:47Z) - Forward-Forward Contrastive Learning [4.465144120325802]
We propose Forward Forward Contrastive Learning (FFCL) as a novel pretraining approach for medical image classification.
FFCL achieves superior performance (3.69% accuracy over ImageNet pretrained ResNet-18) over existing pretraining models in the pneumonia classification task.
arXiv Detail & Related papers (2023-05-04T15:29:06Z) - RAVIR: A Dataset and Methodology for the Semantic Segmentation and
Quantitative Analysis of Retinal Arteries and Veins in Infrared Reflectance
Imaging [7.316426736150123]
We present a novel dataset, dubbed RAVIR, for the semantic segmentation of Retinal Arteries and Veins in Infrared Reflectance (IR) imaging.
We propose a novel deep learning-based methodology, denoted as SegRAVIR, for the semantic segmentation of retinal arteries and veins.
Our experiments validate the effectiveness of SegRAVIR and demonstrate its superior performance in comparison to state-of-the-art models.
arXiv Detail & Related papers (2022-03-28T17:30:29Z) - Self-Supervised Learning from Unlabeled Fundus Photographs Improves
Segmentation of the Retina [4.815051667870375]
Fundus photography is the primary method for retinal imaging and essential for diabetic retinopathy prevention.
Current segmentation methods are not robust towards the diversity in imaging conditions and pathologies typical for real-world clinical applications.
We utilize contrastive self-supervised learning to exploit the large variety of unlabeled fundus images in the publicly available EyePACS dataset.
arXiv Detail & Related papers (2021-08-05T18:02:56Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
We compare the impact of different training procedures for diabetic retinopathy grading.
We investigate different aspects such as quantitative performance, statistics of the learned feature representations, interpretability and robustness to image distortions.
Our results indicate that models from ImageNet pretraining report a significant increase in performance, generalization and robustness to image distortions.
arXiv Detail & Related papers (2021-06-25T08:32:45Z) - Multimodal Transfer Learning-based Approaches for Retinal Vascular
Segmentation [2.672151045393935]
The study of the retinal microcirculation is a key issue in the analysis of many ocular and systemic diseases, like hypertension or diabetes.
FCNs usually represent the most successful approach to image segmentation.
In this work, we present multimodal transfer learning-based approaches for retinal vascular segmentation.
arXiv Detail & Related papers (2020-12-18T10:38:35Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
Low-quality fundus images increase uncertainty in clinical observation and lead to the risk of misdiagnosis.
We propose a clinically oriented fundus enhancement network (cofe-Net) to suppress global degradation factors.
Experiments on both synthetic and real images demonstrate that our algorithm effectively corrects low-quality fundus images without losing retinal details.
arXiv Detail & Related papers (2020-05-12T08:01:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.