Gated Path Selection Network for Semantic Segmentation
- URL: http://arxiv.org/abs/2001.06819v1
- Date: Sun, 19 Jan 2020 12:32:17 GMT
- Title: Gated Path Selection Network for Semantic Segmentation
- Authors: Qichuan Geng, Hong Zhang, Xiaojuan Qi, Ruigang Yang, Zhong Zhou, Gao
Huang
- Abstract summary: We develop a novel network named Gated Path Selection Network (GPSNet), which aims to learn adaptive receptive fields.
In GPSNet, we first design a two-dimensional multi-scale network - SuperNet, which densely incorporates features from growing receptive fields.
To dynamically select desirable semantic context, a gate prediction module is further introduced.
- Score: 72.44994579325822
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic segmentation is a challenging task that needs to handle large scale
variations, deformations and different viewpoints. In this paper, we develop a
novel network named Gated Path Selection Network (GPSNet), which aims to learn
adaptive receptive fields. In GPSNet, we first design a two-dimensional
multi-scale network - SuperNet, which densely incorporates features from
growing receptive fields. To dynamically select desirable semantic context, a
gate prediction module is further introduced. In contrast to previous works
that focus on optimizing sample positions on the regular grids, GPSNet can
adaptively capture free form dense semantic contexts. The derived adaptive
receptive fields are data-dependent, and are flexible that can model different
object geometric transformations. On two representative semantic segmentation
datasets, i.e., Cityscapes, and ADE20K, we show that the proposed approach
consistently outperforms previous methods and achieves competitive performance
without bells and whistles.
Related papers
- Image Captioning via Dynamic Path Customization [100.15412641586525]
We propose a novel Dynamic Transformer Network (DTNet) for image captioning, which dynamically assigns customized paths to different samples, leading to discriminative yet accurate captions.
To validate the effectiveness of our proposed DTNet, we conduct extensive experiments on the MS-COCO dataset and achieve new state-of-the-art performance.
arXiv Detail & Related papers (2024-06-01T07:23:21Z) - Resolution-Aware Design of Atrous Rates for Semantic Segmentation
Networks [7.58745191859815]
DeepLab is a widely used deep neural network for semantic segmentation, whose success is attributed to its parallel architecture called atrous spatial pyramid pooling (ASPP)
fixed values of atrous rates are used for the ASPP module, which restricts the size of its field of view.
This study proposes practical guidelines for obtaining an optimal atrous rate.
arXiv Detail & Related papers (2023-07-26T13:11:48Z) - Domain Adaptive Semantic Segmentation by Optimal Transport [13.133890240271308]
semantic scene segmentation has received a great deal of attention due to the richness of the semantic information it contains.
Current approaches are mainly based on convolutional neural networks (CNN), but they rely on a large number of labels.
We propose a domain adaptation (DA) framework based on optimal transport (OT) and attention mechanism to address this issue.
arXiv Detail & Related papers (2023-03-29T03:33:54Z) - Self-supervised Pre-training for Semantic Segmentation in an Indoor
Scene [8.357801312689622]
We propose RegConsist, a method for self-supervised pre-training of a semantic segmentation model.
We use a variant of contrastive learning to train a DCNN model for predicting semantic segmentation from RGB views in the target environment.
The proposed method outperforms models pre-trained on ImageNet and achieves competitive performance when using models that are trained for exactly the same task but on a different dataset.
arXiv Detail & Related papers (2022-10-04T20:10:14Z) - SemAffiNet: Semantic-Affine Transformation for Point Cloud Segmentation [94.11915008006483]
We propose SemAffiNet for point cloud semantic segmentation.
We conduct extensive experiments on the ScanNetV2 and NYUv2 datasets.
arXiv Detail & Related papers (2022-05-26T17:00:23Z) - Improving Semi-Supervised and Domain-Adaptive Semantic Segmentation with
Self-Supervised Depth Estimation [94.16816278191477]
We present a framework for semi-adaptive and domain-supervised semantic segmentation.
It is enhanced by self-supervised monocular depth estimation trained only on unlabeled image sequences.
We validate the proposed model on the Cityscapes dataset.
arXiv Detail & Related papers (2021-08-28T01:33:38Z) - Latent Space Regularization for Unsupervised Domain Adaptation in
Semantic Segmentation [14.050836886292869]
We introduce feature-level space-shaping regularization strategies to reduce the domain discrepancy in semantic segmentation.
We verify the effectiveness of such methods in the autonomous driving setting.
arXiv Detail & Related papers (2021-04-06T16:07:22Z) - Learning to Predict Context-adaptive Convolution for Semantic
Segmentation [66.27139797427147]
Long-range contextual information is essential for achieving high-performance semantic segmentation.
We propose a Context-adaptive Convolution Network (CaC-Net) to predict a spatially-varying feature weighting vector.
Our CaC-Net achieves superior segmentation performance on three public datasets.
arXiv Detail & Related papers (2020-04-17T13:09:17Z) - Learning Dynamic Routing for Semantic Segmentation [86.56049245100084]
This paper studies a conceptually new method to alleviate the scale variance in semantic representation, named dynamic routing.
The proposed framework generates data-dependent routes, adapting to the scale distribution of each image.
To this end, a differentiable gating function, called soft conditional gate, is proposed to select scale transform paths on the fly.
arXiv Detail & Related papers (2020-03-23T17:22:14Z) - BARNet: Bilinear Attention Network with Adaptive Receptive Fields for
Surgical Instrument Segmentation [26.44585036105453]
We propose a novel bilinear attention network with adaptive receptive field to solve these two challenges.
The proposed network achieves the best performance 97.47% mean IOU on Cata7 and comes first place on EndoVis 2017 by 10.10% IOU overtaking second-ranking method.
arXiv Detail & Related papers (2020-01-20T13:05:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.