Latent Space Regularization for Unsupervised Domain Adaptation in
Semantic Segmentation
- URL: http://arxiv.org/abs/2104.02633v1
- Date: Tue, 6 Apr 2021 16:07:22 GMT
- Title: Latent Space Regularization for Unsupervised Domain Adaptation in
Semantic Segmentation
- Authors: Francesco Barbato, Marco Toldo, Umberto Michieli, Pietro Zanuttigh
- Abstract summary: We introduce feature-level space-shaping regularization strategies to reduce the domain discrepancy in semantic segmentation.
We verify the effectiveness of such methods in the autonomous driving setting.
- Score: 14.050836886292869
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep convolutional neural networks for semantic segmentation allow to achieve
outstanding accuracy, however they also have a couple of major drawbacks:
first, they do not generalize well to distributions slightly different from the
one of the training data; second, they require a huge amount of labeled data
for their optimization. In this paper, we introduce feature-level space-shaping
regularization strategies to reduce the domain discrepancy in semantic
segmentation. In particular, for this purpose we jointly enforce a clustering
objective, a perpendicularity constraint and a norm alignment goal on the
feature vectors corresponding to source and target samples. Additionally, we
propose a novel measure able to capture the relative efficacy of an adaptation
strategy compared to supervised training. We verify the effectiveness of such
methods in the autonomous driving setting achieving state-of-the-art results in
multiple synthetic-to-real road scenes benchmarks.
Related papers
- Adversarial Semi-Supervised Domain Adaptation for Semantic Segmentation:
A New Role for Labeled Target Samples [7.199108088621308]
We design new training objective losses for cases when labeled target data behave as source samples or as real target samples.
To support our approach, we consider a complementary method that mixes source and labeled target data, then applies the same adaptation process.
We illustrate our findings through extensive experiments on the benchmarks GTA5, SYNTHIA, and Cityscapes.
arXiv Detail & Related papers (2023-12-12T15:40:22Z) - Self-training through Classifier Disagreement for Cross-Domain Opinion
Target Extraction [62.41511766918932]
Opinion target extraction (OTE) or aspect extraction (AE) is a fundamental task in opinion mining.
Recent work focus on cross-domain OTE, which is typically encountered in real-world scenarios.
We propose a new SSL approach that opts for selecting target samples whose model output from a domain-specific teacher and student network disagrees on the unlabelled target data.
arXiv Detail & Related papers (2023-02-28T16:31:17Z) - MADAv2: Advanced Multi-Anchor Based Active Domain Adaptation
Segmentation [98.09845149258972]
We introduce active sample selection to assist domain adaptation regarding the semantic segmentation task.
With only a little workload to manually annotate these samples, the distortion of the target-domain distribution can be effectively alleviated.
A powerful semi-supervised domain adaptation strategy is proposed to alleviate the long-tail distribution problem.
arXiv Detail & Related papers (2023-01-18T07:55:22Z) - Labeling Where Adapting Fails: Cross-Domain Semantic Segmentation with
Point Supervision via Active Selection [81.703478548177]
Training models dedicated to semantic segmentation require a large amount of pixel-wise annotated data.
Unsupervised domain adaptation approaches aim at aligning the feature distributions between the labeled source and the unlabeled target data.
Previous works attempted to include human interactions in this process under the form of sparse single-pixel annotations in the target data.
We propose a new domain adaptation framework for semantic segmentation with annotated points via active selection.
arXiv Detail & Related papers (2022-06-01T01:52:28Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Semi-supervised Domain Adaptation for Semantic Segmentation [3.946367634483361]
We propose a novel two-step semi-supervised dual-domain adaptation (SSDDA) approach to address both cross- and intra-domain gaps in semantic segmentation.
We demonstrate that the proposed approach outperforms state-of-the-art methods on two common synthetic-to-real semantic segmentation benchmarks.
arXiv Detail & Related papers (2021-10-20T16:13:00Z) - Adapting Segmentation Networks to New Domains by Disentangling Latent
Representations [14.050836886292869]
Domain adaptation approaches have come into play to transfer knowledge acquired on a label-abundant source domain to a related label-scarce target domain.
We propose a novel performance metric to capture the relative efficacy of an adaptation strategy compared to supervised training.
arXiv Detail & Related papers (2021-08-06T09:43:07Z) - Domain Adaptation for Semantic Segmentation via Patch-Wise Contrastive
Learning [62.7588467386166]
We leverage contrastive learning to bridge the domain gap by aligning the features of structurally similar label patches across domains.
Our approach consistently outperforms state-of-the-art unsupervised and semi-supervised methods on two challenging domain adaptive segmentation tasks.
arXiv Detail & Related papers (2021-04-22T13:39:12Z) - Unsupervised Intra-domain Adaptation for Semantic Segmentation through
Self-Supervision [73.76277367528657]
Convolutional neural network-based approaches have achieved remarkable progress in semantic segmentation.
To cope with this limitation, automatically annotated data generated from graphic engines are used to train segmentation models.
We propose a two-step self-supervised domain adaptation approach to minimize the inter-domain and intra-domain gap together.
arXiv Detail & Related papers (2020-04-16T15:24:11Z) - Domain Adaptation by Class Centroid Matching and Local Manifold
Self-Learning [8.316259570013813]
We propose a novel domain adaptation approach, which can thoroughly explore the data distribution structure of target domain.
We regard the samples within the same cluster in target domain as a whole rather than individuals and assigns pseudo-labels to the target cluster by class centroid matching.
An efficient iterative optimization algorithm is designed to solve the objective function of our proposal with theoretical convergence guarantee.
arXiv Detail & Related papers (2020-03-20T16:59:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.