Finding Optimal Points for Expensive Functions Using Adaptive RBF-Based
Surrogate Model Via Uncertainty Quantification
- URL: http://arxiv.org/abs/2001.06858v1
- Date: Sun, 19 Jan 2020 16:15:55 GMT
- Title: Finding Optimal Points for Expensive Functions Using Adaptive RBF-Based
Surrogate Model Via Uncertainty Quantification
- Authors: Ray-Bing Chen, Yuan Wang, C. F. Jeff Wu
- Abstract summary: We propose a novel global optimization framework using adaptive Radial Basis Functions (RBF) based surrogate model via uncertainty quantification.
It first employs an RBF-based Bayesian surrogate model to approximate the true function, where the parameters of the RBFs can be adaptively estimated and updated each time a new point is explored.
It then utilizes a model-guided selection criterion to identify a new point from a candidate set for function evaluation.
- Score: 11.486221800371919
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Global optimization of expensive functions has important applications in
physical and computer experiments. It is a challenging problem to develop
efficient optimization scheme, because each function evaluation can be costly
and the derivative information of the function is often not available. We
propose a novel global optimization framework using adaptive Radial Basis
Functions (RBF) based surrogate model via uncertainty quantification. The
framework consists of two iteration steps. It first employs an RBF-based
Bayesian surrogate model to approximate the true function, where the parameters
of the RBFs can be adaptively estimated and updated each time a new point is
explored. Then it utilizes a model-guided selection criterion to identify a new
point from a candidate set for function evaluation. The selection criterion
adopted here is a sample version of the expected improvement (EI) criterion. We
conduct simulation studies with standard test functions, which show that the
proposed method has some advantages, especially when the true surface is not
very smooth. In addition, we also propose modified approaches to improve the
search performance for identifying global optimal points and to deal with the
higher dimension scenarios.
Related papers
- Learning Regions of Interest for Bayesian Optimization with Adaptive
Level-Set Estimation [84.0621253654014]
We propose a framework, called BALLET, which adaptively filters for a high-confidence region of interest.
We show theoretically that BALLET can efficiently shrink the search space, and can exhibit a tighter regret bound than standard BO.
arXiv Detail & Related papers (2023-07-25T09:45:47Z) - FAStEN: An Efficient Adaptive Method for Feature Selection and Estimation in High-Dimensional Functional Regressions [7.674715791336311]
We propose a new, flexible and ultra-efficient approach to perform feature selection in a sparse function-on-function regression problem.
We show how to extend it to the scalar-on-function framework.
We present an application to brain fMRI data from the AOMIC PIOP1 study.
arXiv Detail & Related papers (2023-03-26T19:41:17Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - Bayesian Optimization with Informative Covariance [13.113313427848828]
We propose novel informative covariance functions for optimization, leveraging nonstationarity to encode preferences for certain regions of the search space.
We demonstrate that the proposed functions can increase the sample efficiency of Bayesian optimization in high dimensions, even under weak prior information.
arXiv Detail & Related papers (2022-08-04T15:05:11Z) - On the development of a Bayesian optimisation framework for complex
unknown systems [11.066706766632578]
This paper studies and compares common Bayesian optimisation algorithms empirically on a range of synthetic test functions.
It investigates the choice of acquisition function and number of training samples, exact calculation of acquisition functions and Monte Carlo based approaches.
arXiv Detail & Related papers (2022-07-19T09:50:34Z) - Surrogate modeling for Bayesian optimization beyond a single Gaussian
process [62.294228304646516]
We propose a novel Bayesian surrogate model to balance exploration with exploitation of the search space.
To endow function sampling with scalability, random feature-based kernel approximation is leveraged per GP model.
To further establish convergence of the proposed EGP-TS to the global optimum, analysis is conducted based on the notion of Bayesian regret.
arXiv Detail & Related papers (2022-05-27T16:43:10Z) - Rectified Max-Value Entropy Search for Bayesian Optimization [54.26984662139516]
We develop a rectified MES acquisition function based on the notion of mutual information.
As a result, RMES shows a consistent improvement over MES in several synthetic function benchmarks and real-world optimization problems.
arXiv Detail & Related papers (2022-02-28T08:11:02Z) - RoMA: Robust Model Adaptation for Offline Model-based Optimization [115.02677045518692]
We consider the problem of searching an input maximizing a black-box objective function given a static dataset of input-output queries.
A popular approach to solving this problem is maintaining a proxy model that approximates the true objective function.
Here, the main challenge is how to avoid adversarially optimized inputs during the search.
arXiv Detail & Related papers (2021-10-27T05:37:12Z) - Approximate Bayesian Optimisation for Neural Networks [6.921210544516486]
A body of work has been done to automate machine learning algorithm to highlight the importance of model choice.
The necessity to solve the analytical tractability and the computational feasibility in a idealistic fashion enables to ensure the efficiency and the applicability.
arXiv Detail & Related papers (2021-08-27T19:03:32Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
We argue for the use of neural generative models to characterize the worst-case distribution.
This approach poses a number of implementation and optimization challenges.
We find that the proposed approach yields models that are more robust than comparable baselines.
arXiv Detail & Related papers (2021-03-18T14:26:26Z) - Composition of kernel and acquisition functions for High Dimensional
Bayesian Optimization [0.1749935196721634]
We use the addition-ality of the objective function into mapping both the kernel and the acquisition function of the Bayesian Optimization.
This ap-proach makes more efficient the learning/updating of the probabilistic surrogate model.
Results are presented for real-life application, that is the control of pumps in urban water distribution systems.
arXiv Detail & Related papers (2020-03-09T15:45:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.