Indirect Query Bayesian Optimization with Integrated Feedback
- URL: http://arxiv.org/abs/2412.13559v1
- Date: Wed, 18 Dec 2024 07:20:33 GMT
- Title: Indirect Query Bayesian Optimization with Integrated Feedback
- Authors: Mengyan Zhang, Shahine Bouabid, Cheng Soon Ong, Seth Flaxman, Dino Sejdinovic,
- Abstract summary: We develop a new class of Bayesian optimization problems where integrated feedback is given via a conditional expectation of the unknown function $f$ to be optimized.
The goal is to find the global optimum of $f$ by adaptively querying and observing in the space transformed by the conditional distribution.
This is motivated by real-world applications where one cannot access direct feedback due to privacy, hardware or computational constraints.
- Score: 17.66813850517961
- License:
- Abstract: We develop the framework of Indirect Query Bayesian Optimization (IQBO), a new class of Bayesian optimization problems where the integrated feedback is given via a conditional expectation of the unknown function $f$ to be optimized. The underlying conditional distribution can be unknown and learned from data. The goal is to find the global optimum of $f$ by adaptively querying and observing in the space transformed by the conditional distribution. This is motivated by real-world applications where one cannot access direct feedback due to privacy, hardware or computational constraints. We propose the Conditional Max-Value Entropy Search (CMES) acquisition function to address this novel setting, and propose a hierarchical search algorithm to address the multi-resolution setting and improve the computational efficiency. We show regret bounds for our proposed methods and demonstrate the effectiveness of our approaches on simulated optimization tasks.
Related papers
- Localized Zeroth-Order Prompt Optimization [54.964765668688806]
We propose a novel algorithm, namely localized zeroth-order prompt optimization (ZOPO)
ZOPO incorporates a Neural Tangent Kernel-based derived Gaussian process into standard zeroth-order optimization for an efficient search of well-performing local optima in prompt optimization.
Remarkably, ZOPO outperforms existing baselines in terms of both the optimization performance and the query efficiency.
arXiv Detail & Related papers (2024-03-05T14:18:15Z) - Learning Regions of Interest for Bayesian Optimization with Adaptive
Level-Set Estimation [84.0621253654014]
We propose a framework, called BALLET, which adaptively filters for a high-confidence region of interest.
We show theoretically that BALLET can efficiently shrink the search space, and can exhibit a tighter regret bound than standard BO.
arXiv Detail & Related papers (2023-07-25T09:45:47Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - Efficient Non-Parametric Optimizer Search for Diverse Tasks [93.64739408827604]
We present the first efficient scalable and general framework that can directly search on the tasks of interest.
Inspired by the innate tree structure of the underlying math expressions, we re-arrange the spaces into a super-tree.
We adopt an adaptation of the Monte Carlo method to tree search, equipped with rejection sampling and equivalent- form detection.
arXiv Detail & Related papers (2022-09-27T17:51:31Z) - An Efficient Batch Constrained Bayesian Optimization Approach for Analog
Circuit Synthesis via Multi-objective Acquisition Ensemble [11.64233949999656]
We propose an efficient parallelizable Bayesian optimization algorithm via Multi-objective ACquisition function Ensemble (MACE)
Our proposed algorithm can reduce the overall simulation time by up to 74 times compared to differential evolution (DE) for the unconstrained optimization problem when the batch size is 15.
For the constrained optimization problem, our proposed algorithm can speed up the optimization process by up to 15 times compared to the weighted expected improvement based Bayesian optimization (WEIBO) approach, when the batch size is 15.
arXiv Detail & Related papers (2021-06-28T13:21:28Z) - Bayesian Optimisation for Constrained Problems [0.0]
We propose a novel variant of the well-known Knowledge Gradient acquisition function that allows it to handle constraints.
We empirically compare the new algorithm with four other state-of-the-art constrained Bayesian optimisation algorithms and demonstrate its superior performance.
arXiv Detail & Related papers (2021-05-27T15:43:09Z) - Are we Forgetting about Compositional Optimisers in Bayesian
Optimisation? [66.39551991177542]
This paper presents a sample methodology for global optimisation.
Within this, a crucial performance-determiningtrivial is maximising the acquisition function.
We highlight the empirical advantages of the approach to optimise functionation across 3958 individual experiments.
arXiv Detail & Related papers (2020-12-15T12:18:38Z) - Resource Aware Multifidelity Active Learning for Efficient Optimization [0.8717253904965373]
This paper introduces the Resource Aware Active Learning (RAAL) strategy to accelerate the optimization of black box functions.
The RAAL strategy optimally seeds multiple points at each allowing for a major speed up of the optimization task.
arXiv Detail & Related papers (2020-07-09T10:01:32Z) - Global Optimization of Gaussian processes [52.77024349608834]
We propose a reduced-space formulation with trained Gaussian processes trained on few data points.
The approach also leads to significantly smaller and computationally cheaper sub solver for lower bounding.
In total, we reduce time convergence by orders of orders of the proposed method.
arXiv Detail & Related papers (2020-05-21T20:59:11Z) - Upper Trust Bound Feasibility Criterion for Mixed Constrained Bayesian
Optimization with Application to Aircraft Design [41.74498230885008]
We adapt the so-called super effcient global optimization algorithm to solve more accurately mixed constrained problems.
We show the good potential of the approach on a set of numerical experiments.
arXiv Detail & Related papers (2020-05-11T12:59:09Z) - Finding Optimal Points for Expensive Functions Using Adaptive RBF-Based
Surrogate Model Via Uncertainty Quantification [11.486221800371919]
We propose a novel global optimization framework using adaptive Radial Basis Functions (RBF) based surrogate model via uncertainty quantification.
It first employs an RBF-based Bayesian surrogate model to approximate the true function, where the parameters of the RBFs can be adaptively estimated and updated each time a new point is explored.
It then utilizes a model-guided selection criterion to identify a new point from a candidate set for function evaluation.
arXiv Detail & Related papers (2020-01-19T16:15:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.