Adaptive Dithering Using Curved Markov-Gaussian Noise in the Quantized
Domain for Mapping SDR to HDR Image
- URL: http://arxiv.org/abs/2001.06983v1
- Date: Mon, 20 Jan 2020 05:30:16 GMT
- Title: Adaptive Dithering Using Curved Markov-Gaussian Noise in the Quantized
Domain for Mapping SDR to HDR Image
- Authors: Subhayan Mukherjee, Guan-Ming Su, and Irene Cheng
- Abstract summary: High Dynamic Range (SDR) imaging is gaining increased attention due to its realistic content, for not only regular displays but also smartphones.
We present a technique for noise generation that operates on pixels of a quantized image.
We vary the magnitude and structure of the noise pattern adaptively based on the luma of the quantized pixel and the slope of the inverse-tone mapping function.
- Score: 2.913398015606848
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High Dynamic Range (HDR) imaging is gaining increased attention due to its
realistic content, for not only regular displays but also smartphones. Before
sufficient HDR content is distributed, HDR visualization still relies mostly on
converting Standard Dynamic Range (SDR) content. SDR images are often
quantized, or bit depth reduced, before SDR-to-HDR conversion, e.g. for video
transmission. Quantization can easily lead to banding artefacts. In some
computing and/or memory I/O limited environment, the traditional solution using
spatial neighborhood information is not feasible. Our method includes noise
generation (offline) and noise injection (online), and operates on pixels of
the quantized image. We vary the magnitude and structure of the noise pattern
adaptively based on the luma of the quantized pixel and the slope of the
inverse-tone mapping function. Subjective user evaluations confirm the superior
performance of our technique.
Related papers
- Semantic Aware Diffusion Inverse Tone Mapping [5.65968650127342]
Inverse tone mapping attempts to boost captured Standard Dynamic Range (SDR) images back to High Dynamic Range ( HDR)
We present a novel inverse tone mapping approach for mapping SDR images to HDR that generates lost details in clipped regions through a semantic-aware diffusion based inpainting approach.
arXiv Detail & Related papers (2024-05-24T11:44:22Z) - HDR-GS: Efficient High Dynamic Range Novel View Synthesis at 1000x Speed via Gaussian Splatting [76.5908492298286]
Existing HDR NVS methods are mainly based on NeRF.
They suffer from long training time and slow inference speed.
We propose a new framework, High Dynamic Range Gaussian Splatting (-GS)
arXiv Detail & Related papers (2024-05-24T00:46:58Z) - Adapting Pretrained Networks for Image Quality Assessment on High Dynamic Range Displays [0.0]
Conventional image quality metrics (IQMs) are designed for perceptually uniform gamma-encoded pixel values.
Most of the available datasets consist of standard-dynamic-range (SDR) images collected in standard and possibly uncontrolled viewing conditions.
Popular pre-trained neural networks are likewise intended for SDR inputs, restricting their direct application to HDR content.
In this work, we explore more effective approaches for training deep learning-based models for image quality assessment (IQA) on HDR data.
arXiv Detail & Related papers (2024-05-01T17:57:12Z) - Generating Content for HDR Deghosting from Frequency View [56.103761824603644]
Recent Diffusion Models (DMs) have been introduced in HDR imaging field.
DMs require extensive iterations with large models to estimate entire images.
We propose the Low-Frequency aware Diffusion (LF-Diff) model for ghost-free HDR imaging.
arXiv Detail & Related papers (2024-04-01T01:32:11Z) - Towards High-quality HDR Deghosting with Conditional Diffusion Models [88.83729417524823]
High Dynamic Range (LDR) images can be recovered from several Low Dynamic Range (LDR) images by existing Deep Neural Networks (DNNs) techniques.
DNNs still generate ghosting artifacts when LDR images have saturation and large motion.
We formulate the HDR deghosting problem as an image generation that leverages LDR features as the diffusion model's condition.
arXiv Detail & Related papers (2023-11-02T01:53:55Z) - SMAE: Few-shot Learning for HDR Deghosting with Saturation-Aware Masked
Autoencoders [97.64072440883392]
We propose a novel semi-supervised approach to realize few-shot HDR imaging via two stages of training, called SSHDR.
Unlikely previous methods, directly recovering content and removing ghosts simultaneously, which is hard to achieve optimum.
Experiments demonstrate that SSHDR outperforms state-of-the-art methods quantitatively and qualitatively within and across different datasets.
arXiv Detail & Related papers (2023-04-14T03:42:51Z) - Invertible Tone Mapping with Selectable Styles [19.03179521805971]
In this paper, we propose an invertible tone mapping method that converts the multi-exposure HDR to a true LDR.
Our invertible LDR can mimic the appearance of a user-selected tone mapping style.
It can be shared over any existing social network platforms that may re-encode or format-convert the uploaded images.
arXiv Detail & Related papers (2021-10-09T07:32:36Z) - Wavelet-Based Network For High Dynamic Range Imaging [64.66969585951207]
Existing methods, such as optical flow based and end-to-end deep learning based solutions, are error-prone either in detail restoration or ghosting artifacts removal.
In this work, we propose a novel frequency-guided end-to-end deep neural network (FNet) to conduct HDR fusion in the frequency domain, and Wavelet Transform (DWT) is used to decompose inputs into different frequency bands.
The low-frequency signals are used to avoid specific ghosting artifacts, while the high-frequency signals are used for preserving details.
arXiv Detail & Related papers (2021-08-03T12:26:33Z) - HDRUNet: Single Image HDR Reconstruction with Denoising and
Dequantization [39.82945546614887]
We propose a novel learning-based approach using a spatially dynamic encoder-decoder network, HDRUNet, to learn an end-to-end mapping for single image HDR reconstruction.
Our method achieves the state-of-the-art performance in quantitative comparisons and visual quality.
arXiv Detail & Related papers (2021-05-27T12:12:34Z) - HDR-GAN: HDR Image Reconstruction from Multi-Exposed LDR Images with
Large Motions [62.44802076971331]
We propose a novel GAN-based model, HDR-GAN, for synthesizing HDR images from multi-exposed LDR images.
By incorporating adversarial learning, our method is able to produce faithful information in the regions with missing content.
arXiv Detail & Related papers (2020-07-03T11:42:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.