Generating Content for HDR Deghosting from Frequency View
- URL: http://arxiv.org/abs/2404.00849v1
- Date: Mon, 1 Apr 2024 01:32:11 GMT
- Title: Generating Content for HDR Deghosting from Frequency View
- Authors: Tao Hu, Qingsen Yan, Yuankai Qi, Yanning Zhang,
- Abstract summary: Recent Diffusion Models (DMs) have been introduced in HDR imaging field.
DMs require extensive iterations with large models to estimate entire images.
We propose the Low-Frequency aware Diffusion (LF-Diff) model for ghost-free HDR imaging.
- Score: 56.103761824603644
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recovering ghost-free High Dynamic Range (HDR) images from multiple Low Dynamic Range (LDR) images becomes challenging when the LDR images exhibit saturation and significant motion. Recent Diffusion Models (DMs) have been introduced in HDR imaging field, demonstrating promising performance, particularly in achieving visually perceptible results compared to previous DNN-based methods. However, DMs require extensive iterations with large models to estimate entire images, resulting in inefficiency that hinders their practical application. To address this challenge, we propose the Low-Frequency aware Diffusion (LF-Diff) model for ghost-free HDR imaging. The key idea of LF-Diff is implementing the DMs in a highly compacted latent space and integrating it into a regression-based model to enhance the details of reconstructed images. Specifically, as low-frequency information is closely related to human visual perception we propose to utilize DMs to create compact low-frequency priors for the reconstruction process. In addition, to take full advantage of the above low-frequency priors, the Dynamic HDR Reconstruction Network (DHRNet) is carried out in a regression-based manner to obtain final HDR images. Extensive experiments conducted on synthetic and real-world benchmark datasets demonstrate that our LF-Diff performs favorably against several state-of-the-art methods and is 10$\times$ faster than previous DM-based methods.
Related papers
- A Cycle Ride to HDR: Semantics Aware Self-Supervised Framework for Unpaired LDR-to-HDR Image Translation [0.0]
Low Dynamic Range (LDR) to High Dynamic Range () image translation is an important computer vision problem.
Most current state-of-the-art methods require high-quality paired LDR, datasets for model training.
We propose a modified cycle-consistent adversarial architecture and utilize unpaired LDR, datasets for training.
arXiv Detail & Related papers (2024-10-19T11:11:58Z) - Exposure Diffusion: HDR Image Generation by Consistent LDR denoising [29.45922922270381]
We seek inspiration from the HDR image capture literature that traditionally fuses sets of LDR images, called "brackets", to produce a single HDR image.
We operate multiple denoising processes to generate multiple LDR brackets that together form a valid HDR result.
arXiv Detail & Related papers (2024-05-23T08:24:22Z) - HistoHDR-Net: Histogram Equalization for Single LDR to HDR Image
Translation [12.45632443397018]
High Dynamic Range ( HDR) imaging aims to replicate the high visual quality and clarity of real-world scenes.
The literature offers various data-driven methods for HDR image reconstruction from Low Dynamic Range (LDR) counterparts.
A common limitation of these approaches is missing details in regions of the reconstructed HDR images.
We propose a simple and effective method, Histo-Net, to recover the fine details.
arXiv Detail & Related papers (2024-02-08T20:14:46Z) - Towards High-quality HDR Deghosting with Conditional Diffusion Models [88.83729417524823]
High Dynamic Range (LDR) images can be recovered from several Low Dynamic Range (LDR) images by existing Deep Neural Networks (DNNs) techniques.
DNNs still generate ghosting artifacts when LDR images have saturation and large motion.
We formulate the HDR deghosting problem as an image generation that leverages LDR features as the diffusion model's condition.
arXiv Detail & Related papers (2023-11-02T01:53:55Z) - Single Image LDR to HDR Conversion using Conditional Diffusion [18.466814193413487]
Digital imaging aims to replicate realistic scenes, but Low Dynamic Range (LDR) cameras cannot represent the wide dynamic range of real scenes.
This paper presents a deep learning-based approach for recovering intricate details from shadows and highlights.
We incorporate a deep-based autoencoder in our proposed framework to enhance the quality of the latent representation of LDR image used for conditioning.
arXiv Detail & Related papers (2023-07-06T07:19:47Z) - SMAE: Few-shot Learning for HDR Deghosting with Saturation-Aware Masked
Autoencoders [97.64072440883392]
We propose a novel semi-supervised approach to realize few-shot HDR imaging via two stages of training, called SSHDR.
Unlikely previous methods, directly recovering content and removing ghosts simultaneously, which is hard to achieve optimum.
Experiments demonstrate that SSHDR outperforms state-of-the-art methods quantitatively and qualitatively within and across different datasets.
arXiv Detail & Related papers (2023-04-14T03:42:51Z) - GlowGAN: Unsupervised Learning of HDR Images from LDR Images in the Wild [74.52723408793648]
We present the first method for learning a generative model of HDR images from in-the-wild LDR image collections in a fully unsupervised manner.
The key idea is to train a generative adversarial network (GAN) to generate HDR images which, when projected to LDR under various exposures, are indistinguishable from real LDR images.
Experiments show that our method GlowGAN can synthesize photorealistic HDR images in many challenging cases such as landscapes, lightning, or windows.
arXiv Detail & Related papers (2022-11-22T15:42:08Z) - Wavelet-Based Network For High Dynamic Range Imaging [64.66969585951207]
Existing methods, such as optical flow based and end-to-end deep learning based solutions, are error-prone either in detail restoration or ghosting artifacts removal.
In this work, we propose a novel frequency-guided end-to-end deep neural network (FNet) to conduct HDR fusion in the frequency domain, and Wavelet Transform (DWT) is used to decompose inputs into different frequency bands.
The low-frequency signals are used to avoid specific ghosting artifacts, while the high-frequency signals are used for preserving details.
arXiv Detail & Related papers (2021-08-03T12:26:33Z) - HDR-GAN: HDR Image Reconstruction from Multi-Exposed LDR Images with
Large Motions [62.44802076971331]
We propose a novel GAN-based model, HDR-GAN, for synthesizing HDR images from multi-exposed LDR images.
By incorporating adversarial learning, our method is able to produce faithful information in the regions with missing content.
arXiv Detail & Related papers (2020-07-03T11:42:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.