Fundamental Limits of Testing the Independence of Irrelevant
Alternatives in Discrete Choice
- URL: http://arxiv.org/abs/2001.07042v1
- Date: Mon, 20 Jan 2020 10:15:28 GMT
- Title: Fundamental Limits of Testing the Independence of Irrelevant
Alternatives in Discrete Choice
- Authors: Arjun Seshadri, Johan Ugander
- Abstract summary: The Multinomial Logit (MNL) model and the Independence of Irrelevant Alternatives (IIA) are the most widely used tools of discrete choice.
We show that any general test for IIA with low worst-case error would require a number of samples exponential in the number of alternatives of the choice problem.
Our lower bounds are structure-dependent, and as a potential cause for optimism, we find that if one restricts the test of IIA to violations that can occur in a specific collection of choice sets, one obtains structure-dependent lower bounds that are much less pessimistic.
- Score: 9.13127392774573
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Multinomial Logit (MNL) model and the axiom it satisfies, the
Independence of Irrelevant Alternatives (IIA), are together the most widely
used tools of discrete choice. The MNL model serves as the workhorse model for
a variety of fields, but is also widely criticized, with a large body of
experimental literature claiming to document real-world settings where IIA
fails to hold. Statistical tests of IIA as a modelling assumption have been the
subject of many practical tests focusing on specific deviations from IIA over
the past several decades, but the formal size properties of hypothesis testing
IIA are still not well understood. In this work we replace some of the
ambiguity in this literature with rigorous pessimism, demonstrating that any
general test for IIA with low worst-case error would require a number of
samples exponential in the number of alternatives of the choice problem. A
major benefit of our analysis over previous work is that it lies entirely in
the finite-sample domain, a feature crucial to understanding the behavior of
tests in the common data-poor settings of discrete choice. Our lower bounds are
structure-dependent, and as a potential cause for optimism, we find that if one
restricts the test of IIA to violations that can occur in a specific collection
of choice sets (e.g., pairs), one obtains structure-dependent lower bounds that
are much less pessimistic. Our analysis of this testing problem is unorthodox
in being highly combinatorial, counting Eulerian orientations of cycle
decompositions of a particular bipartite graph constructed from a data set of
choices. By identifying fundamental relationships between the comparison
structure of a given testing problem and its sample efficiency, we hope these
relationships will help lay the groundwork for a rigorous rethinking of the IIA
testing problem as well as other testing problems in discrete choice.
Related papers
- Federated Nonparametric Hypothesis Testing with Differential Privacy Constraints: Optimal Rates and Adaptive Tests [5.3595271893779906]
Federated learning has attracted significant recent attention due to its applicability across a wide range of settings where data is collected and analyzed across disparate locations.
We study federated nonparametric goodness-of-fit testing in the white-noise-with-drift model under distributed differential privacy (DP) constraints.
arXiv Detail & Related papers (2024-06-10T19:25:19Z) - Deep anytime-valid hypothesis testing [29.273915933729057]
We propose a general framework for constructing powerful, sequential hypothesis tests for nonparametric testing problems.
We develop a principled approach of leveraging the representation capability of machine learning models within the testing-by-betting framework.
Empirical results on synthetic and real-world datasets demonstrate that tests instantiated using our general framework are competitive against specialized baselines.
arXiv Detail & Related papers (2023-10-30T09:46:19Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - On Pitfalls of Test-Time Adaptation [82.8392232222119]
Test-Time Adaptation (TTA) has emerged as a promising approach for tackling the robustness challenge under distribution shifts.
We present TTAB, a test-time adaptation benchmark that encompasses ten state-of-the-art algorithms, a diverse array of distribution shifts, and two evaluation protocols.
arXiv Detail & Related papers (2023-06-06T09:35:29Z) - Sequential Kernelized Independence Testing [101.22966794822084]
We design sequential kernelized independence tests inspired by kernelized dependence measures.
We demonstrate the power of our approaches on both simulated and real data.
arXiv Detail & Related papers (2022-12-14T18:08:42Z) - Contrastive Neural Ratio Estimation for Simulation-based Inference [15.354874711988662]
Likelihood-to-evidence ratio estimation is usually cast as either a binary (NRE-A) or a multiclass (NRE-B) classification task.
In contrast to the binary classification framework, the current formulation of the multiclass version has an intrinsic and unknown bias term.
We propose a multiclass framework free from the bias inherent to NRE-B at optimum, leaving us in the position to run diagnostics that practitioners depend on.
arXiv Detail & Related papers (2022-10-11T00:12:51Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
In this paper, we show how bringing recent results on equivariant representation learning instantiated on structured spaces together with simple use of classical results on causal inference provides an effective practical solution.
We demonstrate how our model allows dealing with more than one nuisance variable under some assumptions and can enable analysis of pooled scientific datasets in scenarios that would otherwise entail removing a large portion of the samples.
arXiv Detail & Related papers (2022-03-29T04:54:06Z) - Composite Goodness-of-fit Tests with Kernels [19.744607024807188]
We propose a kernel-based hypothesis tests for the challenging composite testing problem.
Our tests make use of minimum distance estimators based on the maximum mean discrepancy and the kernel Stein discrepancy.
As our main result, we show that we are able to estimate the parameter and conduct our test on the same data, while maintaining a correct test level.
arXiv Detail & Related papers (2021-11-19T15:25:06Z) - Recursive Causal Structure Learning in the Presence of Latent Variables
and Selection Bias [27.06618125828978]
We consider the problem of learning the causal MAG of a system from observational data in the presence of latent variables and selection bias.
We propose a novel computationally efficient constraint-based method that is sound and complete.
We provide experimental results to compare the proposed approach with the state of the art on both synthetic and real-world structures.
arXiv Detail & Related papers (2021-10-22T19:49:59Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z) - Lower bounds in multiple testing: A framework based on derandomized
proxies [107.69746750639584]
This paper introduces an analysis strategy based on derandomization, illustrated by applications to various concrete models.
We provide numerical simulations of some of these lower bounds, and show a close relation to the actual performance of the Benjamini-Hochberg (BH) algorithm.
arXiv Detail & Related papers (2020-05-07T19:59:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.