Contrastive Neural Ratio Estimation for Simulation-based Inference
- URL: http://arxiv.org/abs/2210.06170v3
- Date: Thu, 4 Jul 2024 14:34:31 GMT
- Title: Contrastive Neural Ratio Estimation for Simulation-based Inference
- Authors: Benjamin Kurt Miller, Christoph Weniger, Patrick Forré,
- Abstract summary: Likelihood-to-evidence ratio estimation is usually cast as either a binary (NRE-A) or a multiclass (NRE-B) classification task.
In contrast to the binary classification framework, the current formulation of the multiclass version has an intrinsic and unknown bias term.
We propose a multiclass framework free from the bias inherent to NRE-B at optimum, leaving us in the position to run diagnostics that practitioners depend on.
- Score: 15.354874711988662
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Likelihood-to-evidence ratio estimation is usually cast as either a binary (NRE-A) or a multiclass (NRE-B) classification task. In contrast to the binary classification framework, the current formulation of the multiclass version has an intrinsic and unknown bias term, making otherwise informative diagnostics unreliable. We propose a multiclass framework free from the bias inherent to NRE-B at optimum, leaving us in the position to run diagnostics that practitioners depend on. It also recovers NRE-A in one corner case and NRE-B in the limiting case. For fair comparison, we benchmark the behavior of all algorithms in both familiar and novel training regimes: when jointly drawn data is unlimited, when data is fixed but prior draws are unlimited, and in the commonplace fixed data and parameters setting. Our investigations reveal that the highest performing models are distant from the competitors (NRE-A, NRE-B) in hyperparameter space. We make a recommendation for hyperparameters distinct from the previous models. We suggest two bounds on the mutual information as performance metrics for simulation-based inference methods, without the need for posterior samples, and provide experimental results. This version corrects a minor implementation error in $\gamma$, improving results.
Related papers
- Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
We propose to include a calibration term directly into the training objective of the neural model.
By introducing a relaxation of the classical formulation of calibration error we enable end-to-end backpropagation.
It is directly applicable to existing computational pipelines allowing reliable black-box posterior inference.
arXiv Detail & Related papers (2023-10-20T10:20:45Z) - Evaluating Graph Neural Networks for Link Prediction: Current Pitfalls
and New Benchmarking [66.83273589348758]
Link prediction attempts to predict whether an unseen edge exists based on only a portion of edges of a graph.
A flurry of methods have been introduced in recent years that attempt to make use of graph neural networks (GNNs) for this task.
New and diverse datasets have also been created to better evaluate the effectiveness of these new models.
arXiv Detail & Related papers (2023-06-18T01:58:59Z) - Sample-Then-Optimize Batch Neural Thompson Sampling [50.800944138278474]
We introduce two algorithms for black-box optimization based on the Thompson sampling (TS) policy.
To choose an input query, we only need to train an NN and then choose the query by maximizing the trained NN.
Our algorithms sidestep the need to invert the large parameter matrix yet still preserve the validity of the TS policy.
arXiv Detail & Related papers (2022-10-13T09:01:58Z) - Rethinking Missing Data: Aleatoric Uncertainty-Aware Recommendation [59.500347564280204]
We propose a new Aleatoric Uncertainty-aware Recommendation (AUR) framework.
AUR consists of a new uncertainty estimator along with a normal recommender model.
As the chance of mislabeling reflects the potential of a pair, AUR makes recommendations according to the uncertainty.
arXiv Detail & Related papers (2022-09-22T04:32:51Z) - RIFLE: Imputation and Robust Inference from Low Order Marginals [10.082738539201804]
We develop a statistical inference framework for regression and classification in the presence of missing data without imputation.
Our framework, RIFLE, estimates low-order moments of the underlying data distribution with corresponding confidence intervals to learn a distributionally robust model.
Our experiments demonstrate that RIFLE outperforms other benchmark algorithms when the percentage of missing values is high and/or when the number of data points is relatively small.
arXiv Detail & Related papers (2021-09-01T23:17:30Z) - Adaptive Estimation and Uniform Confidence Bands for Nonparametric
Structural Functions and Elasticities [2.07706336594149]
We introduce two data-driven procedures for optimal estimation and inference in nonparametric models.
We estimate the elasticity of the intensive margin of firm exports in a monopolistic competition model of international trade.
arXiv Detail & Related papers (2021-07-25T18:46:33Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
Even simple methods like least squares can exhibit non-normal behavior when data is collected in an adaptive manner.
We propose a family of online debiasing estimators to correct these distributional anomalies in at least squares estimation.
We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.
arXiv Detail & Related papers (2021-07-05T21:05:11Z) - Binary Classification of Gaussian Mixtures: Abundance of Support
Vectors, Benign Overfitting and Regularization [39.35822033674126]
We study binary linear classification under a generative Gaussian mixture model.
We derive novel non-asymptotic bounds on the classification error of the latter.
Our results extend to a noisy model with constant probability noise flips.
arXiv Detail & Related papers (2020-11-18T07:59:55Z) - Exploring the Uncertainty Properties of Neural Networks' Implicit Priors
in the Infinite-Width Limit [47.324627920761685]
We use recent theoretical advances that characterize the function-space prior to an ensemble of infinitely-wide NNs as a Gaussian process.
This gives us a better understanding of the implicit prior NNs place on function space.
We also examine the calibration of previous approaches to classification with the NNGP.
arXiv Detail & Related papers (2020-10-14T18:41:54Z) - Why have a Unified Predictive Uncertainty? Disentangling it using Deep
Split Ensembles [39.29536042476913]
Understanding and quantifying uncertainty in black box Neural Networks (NNs) is critical when deployed in real-world settings such as healthcare.
We propose a conceptually simple non-Bayesian approach, deep split ensemble, to disentangle the predictive uncertainties.
arXiv Detail & Related papers (2020-09-25T19:15:26Z) - Lower bounds in multiple testing: A framework based on derandomized
proxies [107.69746750639584]
This paper introduces an analysis strategy based on derandomization, illustrated by applications to various concrete models.
We provide numerical simulations of some of these lower bounds, and show a close relation to the actual performance of the Benjamini-Hochberg (BH) algorithm.
arXiv Detail & Related papers (2020-05-07T19:59:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.