Precise tomography of optical polarization qubits under conditions of
chromatic aberration of quantum transformations
- URL: http://arxiv.org/abs/2001.07255v3
- Date: Wed, 5 Feb 2020 11:23:37 GMT
- Title: Precise tomography of optical polarization qubits under conditions of
chromatic aberration of quantum transformations
- Authors: B. I. Bantysh, Yu. I. Bogdanov, N. A. Bogdanova, Yu. A. Kuznetsov
- Abstract summary: We show that the chromatic aberration reduces the amount of information in the measurements results.
We also demonstrate that our model outperforms the standard model of projective measurements.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we present an algorithm of building an adequate model of
polarizing quantum state measurement. This model takes into account chromatic
aberration of the basis change transformation caused by the parasitic
dispersion of the wave plates crystal and finite radiation spectral bandwidth.
We show that the chromatic aberration reduces the amount of information in the
measurements results. Using the information matrix approach we estimate the
impact of this effect on the qubit state reconstruction fidelity for different
values of sample size and spectral bandwidth. We also demonstrate that our
model outperforms the standard model of projective measurements as it could
suppress systematic errors of quantum tomography even when one performs the
measurements using wave plates of high order.
Related papers
- The multi-state geometry of shift current and polarization [44.99833362998488]
We employ quantum state projectors to develop an explicitly gauge-invariant formalism.
We provide a simple expression for the shift current that resolves its precise relation to the moments of electronic polarization.
We reveal its decomposition into the sum of the skewness of the occupied states and intrinsic multi-state geometry.
arXiv Detail & Related papers (2024-09-24T18:00:02Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Demonstration of Lossy Linear Transformations and Two-Photon Interference on a Photonic Chip [78.1768579844556]
We show that engineered loss, using an auxiliary waveguide, allows one to invert the spatial statistics from bunching to antibunching.
We study the photon statistics within the loss-emulating channel and observe photon coincidences, which may provide insights into the design of quantum photonic integrated chips.
arXiv Detail & Related papers (2024-04-09T06:45:46Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Retrieving space-dependent polarization transformations via near-optimal
quantum process tomography [55.41644538483948]
We investigate the application of genetic and machine learning approaches to tomographic problems.
We find that the neural network-based scheme provides a significant speed-up, that may be critical in applications requiring a characterization in real-time.
We expect these results to lay the groundwork for the optimization of tomographic approaches in more general quantum processes.
arXiv Detail & Related papers (2022-10-27T11:37:14Z) - Aberration control in quantitative widefield quantum microscopy [0.0]
We show that optical aberrations in the imaging system may cause large systematic errors in the measured quantity.
We introduce a simple theoretical framework to model these effects, which extends the concept of a point spread function to the domain of spectral imaging.
arXiv Detail & Related papers (2022-07-26T06:30:12Z) - Measurement of polarization quantum states under chromatic aberration
conditions [0.0]
It is known that the transformation of light by means of two wave plates makes it possible to measure the state of polarization in an arbitrary basis.
The finite spectral width of the light, however, leads to a chromatic aberration of the polarization quantum transformation caused by the parasitic dispersion of the birefringence of the plate material.
This causes systematic errors in the tomography of quantum polarization states and significantly reduces its accuracy.
arXiv Detail & Related papers (2022-01-09T19:35:55Z) - Modeling of Multimodal Scattering by Conducting Bodies in Quantum
Optics: the Method of Characteristic Modes [0.0]
We give the quantum adaptation of the characteristic mode approach widely used in the classical electrodynamics.
We show how scattering affects quantum-statistical features of the field.
We expect that this method will be useful for designing quantum-optical devices.
arXiv Detail & Related papers (2021-12-17T14:25:59Z) - QND measurements of photon number in monolithic microcavities [0.0]
We revisit the idea of quantum nondemolition measurement (QND) of optical quanta.
We show that the monolithic microcavities enable QND measurement of number of quanta in a weak signal field.
We show that the best modern monolithic microcavities allow achieving the measurement imprecision several times better than the standard quantum limit.
arXiv Detail & Related papers (2021-11-29T17:00:15Z) - Superradiance in dynamically modulated Tavis-Cumming model with spectral
disorder [62.997667081978825]
Superradiance is the enhanced emission of photons from quantum emitters collectively coupling to the same optical mode.
We study the interplay between superradiance and spectral disorder in a dynamically modulated Tavis-Cummings model.
arXiv Detail & Related papers (2021-08-18T21:29:32Z) - Quantum state tomography of qutrits by single-photon counting with
imperfect measurements [0.0]
We introduce a framework for quantum state tomography of qutrits by projective measurements.
The accuracy of state reconstruction is quantified by figures of merit which are presented on graphs versus the amount of noise.
arXiv Detail & Related papers (2021-04-01T17:49:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.