Aberration control in quantitative widefield quantum microscopy
- URL: http://arxiv.org/abs/2207.12675v1
- Date: Tue, 26 Jul 2022 06:30:12 GMT
- Title: Aberration control in quantitative widefield quantum microscopy
- Authors: S. C. Scholten, I. O. Robertson, G. J. Abrahams, Priya Singh, A. J.
Healey, J.-P. Tetienne
- Abstract summary: We show that optical aberrations in the imaging system may cause large systematic errors in the measured quantity.
We introduce a simple theoretical framework to model these effects, which extends the concept of a point spread function to the domain of spectral imaging.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Widefield quantum microscopy based on nitrogen-vacancy (NV) centres in
diamond has emerged as a powerful technique for quantitative mapping of
magnetic fields with a sub-micron resolution. However, the accuracy of the
technique has not been characterised in detail so far. Here we show that
optical aberrations in the imaging system may cause large systematic errors in
the measured quantity beyond trivial blurring. We introduce a simple
theoretical framework to model these effects, which extends the concept of a
point spread function to the domain of spectral imaging. Using this model, the
magnetic field imaging of test magnetic samples is simulated under various
scenarios, and the resulting errors quantified. We then apply the model to
previously published data, show that apparent magnetic anomalies can be
explained by the presence of optical aberrations, and demonstrate a
post-processing technique to retrieve the source quantity with improved
accuracy. This work presents a guide to predict and mitigate aberration induced
artefacts in quantitative NV-based widefield imaging and in spectral imaging
more generally.
Related papers
- On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Quantum Sensing with Scanning Near-Field Optical Photons Scattered by an
Atomic-Force Microscope Tip [0.0]
Scattering scanning near-field optical microscopy (s-SNOM) is known as a promising technique for overcoming Abbe diffraction limit.
We propose a quantum model for the suggested system, by employing electric-dipole approximation, image theory, and perturbation theory.
Our proposed scheme can be used for quantum imaging or quantum spectroscopy with high resolution.
arXiv Detail & Related papers (2022-12-09T05:53:51Z) - Retrieving space-dependent polarization transformations via near-optimal
quantum process tomography [55.41644538483948]
We investigate the application of genetic and machine learning approaches to tomographic problems.
We find that the neural network-based scheme provides a significant speed-up, that may be critical in applications requiring a characterization in real-time.
We expect these results to lay the groundwork for the optimization of tomographic approaches in more general quantum processes.
arXiv Detail & Related papers (2022-10-27T11:37:14Z) - Toward deep-learning-assisted spectrally-resolved imaging of magnetic
noise [52.77024349608834]
We implement a deep neural network to efficiently reconstruct the spectral density of the underlying fluctuating magnetic field.
These results create opportunities for the application of machine-learning methods to color-center-based nanoscale sensing and imaging.
arXiv Detail & Related papers (2022-08-01T19:18:26Z) - Self-Bayesian Aberration Removal via Constraints for Ultracold Atom
Microscopy [0.0]
High-resolution imaging of ultracold atoms typically requires custom high numerical aperture (NA) optics.
We employ a low cost high NA aspheric lens as an objective for a practical and economical-although aberrated-high resolution microscope.
We show that our digital correction technique reduces the contribution of photon shot noise to density-density correlation measurements.
arXiv Detail & Related papers (2021-08-16T14:22:04Z) - Regularization by Denoising Sub-sampled Newton Method for Spectral CT
Multi-Material Decomposition [78.37855832568569]
We propose to solve a model-based maximum-a-posterior problem to reconstruct multi-materials images with application to spectral CT.
In particular, we propose to solve a regularized optimization problem based on a plug-in image-denoising function.
We show numerical and experimental results for spectral CT materials decomposition.
arXiv Detail & Related papers (2021-03-25T15:20:10Z) - Technical Review: Imaging weak magnetic field patterns on the
nanometer-scale and its application to 2D materials [0.0]
We review the state-of-the-art techniques most amenable to the investigation of such systems.
We compare the capabilities of these techniques, their required operating conditions, and assess their suitability to different types of source contrast.
arXiv Detail & Related papers (2021-03-18T17:11:39Z) - Deep image prior for 3D magnetic particle imaging: A quantitative
comparison of regularization techniques on Open MPI dataset [2.2366638308792735]
MPI has a continuously increasing number of potential medical applications.
One prerequisite for successful performance in these applications is a proper solution to the image reconstruction problem.
We investigate a novel reconstruction approach based on a deep image prior, which builds on representing the solution by a deep neural network.
arXiv Detail & Related papers (2020-07-03T10:13:10Z) - Quantum metamaterial for nondestructive microwave photon counting [52.77024349608834]
We introduce a single-photon detector design operating in the microwave domain based on a weakly nonlinear metamaterial.
We show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths.
In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed.
arXiv Detail & Related papers (2020-05-13T18:00:03Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
We propose an approach for fusing hyperspectral and multispectral images to provide high-quality hyperspectral output.
We demonstrate that the proposed sparse fusion and reconstruction provides quantitatively superior results when compared to existing methods on publicly available images.
arXiv Detail & Related papers (2020-03-15T23:07:56Z) - Precise tomography of optical polarization qubits under conditions of
chromatic aberration of quantum transformations [0.0]
We show that the chromatic aberration reduces the amount of information in the measurements results.
We also demonstrate that our model outperforms the standard model of projective measurements.
arXiv Detail & Related papers (2020-01-20T21:18:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.