The effect of Homodyne-based feedback control on quantum speed limit
time
- URL: http://arxiv.org/abs/2001.07479v1
- Date: Tue, 21 Jan 2020 12:34:59 GMT
- Title: The effect of Homodyne-based feedback control on quantum speed limit
time
- Authors: S. Haseli
- Abstract summary: Quantum speed limit time is inversely related to the speed of evolution of a quantum system.
In this work, we study the quantum speed limit time of a two-level atom under Homodyne-based feedback control.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The minimal time a system requires to transform from an initial state to
target state is defined as the quantum speed limit time. quantum speed limit
time can be applied to quantify the maximum speed of the evolution of a quantum
system. Quantum speed limit time is inversely related to the speed of evolution
of a quantum system. That is, shorter quantum speed limit time means higher
speed of quantum evolution. In this work, we study the quantum speed limit time
of a two-level atom under Homodyne-based feedback control. The results show
that the quantum speed limit time is decreased by increasing feedback
coefficient. So, Homodyne-based feedback control can induce speedup the
evolution of quantum system.
Related papers
- On Reducing the Execution Latency of Superconducting Quantum Processors via Quantum Program Scheduling [48.142860424323395]
We introduce the Quantum Program Scheduling Problem (QPSP) to improve the utility efficiency of quantum resources.
Specifically, a quantum program scheduling method concerning the circuit width, number of measurement shots, and submission time of quantum programs is proposed to reduce the execution latency.
arXiv Detail & Related papers (2024-04-11T16:12:01Z) - Quantum Acceleration Limit [0.0]
We prove that the quantum acceleration is upper bounded by the fluctuation in the derivative of the Hamiltonian.
This leads to a universal quantum acceleration limit (QAL) which answers the question: What is the minimum time required for a quantum system to be accelerated.
arXiv Detail & Related papers (2023-12-01T18:45:28Z) - Exact Quantum Speed Limits [0.0]
We derive exact quantum speed limits for the unitary dynamics of pure-state quantum system.
We estimate the evolution time for two- and higher-dimensional quantum systems.
Results will have a significant impact on our understanding of quantum physics.
arXiv Detail & Related papers (2023-05-05T20:38:54Z) - Quantum Speed Limit for Change of Basis [55.500409696028626]
We extend the notion of quantum speed limits to collections of quantum states.
For two-qubit systems, we show that the fastest transformation implements two Hadamards and a swap of the qubits simultaneously.
For qutrit systems the evolution time depends on the particular type of the unbiased basis.
arXiv Detail & Related papers (2022-12-23T14:10:13Z) - Quantum Speed Limit From Tighter Uncertainty Relation [0.0]
We prove a new quantum speed limit using the tighter uncertainty relations for pure quantum systems undergoing arbitrary unitary evolution.
We show that the MT bound is a special case of the tighter quantum speed limit derived here.
We illustrate the tighter speed limit for pure states with examples using random Hamiltonians and show that the new quantum speed limit outperforms the MT bound.
arXiv Detail & Related papers (2022-11-26T13:14:58Z) - Stronger Quantum Speed Limit [0.0]
We prove a stronger quantum speed limit (SQSL) for all quantum systems undergoing arbitrary unitary evolution.
The stronger quantum speed limit will have wide range of applications in quantum control, quantum computing and quantum information processing.
arXiv Detail & Related papers (2022-08-10T17:56:51Z) - Generalised quantum speed limit for arbitrary time-continuous evolution [0.0]
We derive a generalised quantum speed limit (GQSL) for arbitrary time-continuous evolution using the geometrical approach of quantum mechanics.
The GQSL is applicable for quantum systems undergoing unitary, non-unitary, completely positive, non-completely positive and relativistic quantum dynamics.
arXiv Detail & Related papers (2022-07-08T21:00:11Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z) - Jumptime unraveling of Markovian open quantum systems [68.8204255655161]
We introduce jumptime unraveling as a distinct description of open quantum systems.
quantum jump trajectories emerge, physically, from continuous quantum measurements.
We demonstrate that quantum trajectories can also be ensemble-averaged at specific jump counts.
arXiv Detail & Related papers (2020-01-24T09:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.