Exact Quantum Speed Limits
- URL: http://arxiv.org/abs/2305.03839v2
- Date: Tue, 29 Aug 2023 16:25:46 GMT
- Title: Exact Quantum Speed Limits
- Authors: Arun K. Pati, Brij Mohan, Sahil, and Samuel L. Braunstein
- Abstract summary: We derive exact quantum speed limits for the unitary dynamics of pure-state quantum system.
We estimate the evolution time for two- and higher-dimensional quantum systems.
Results will have a significant impact on our understanding of quantum physics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The traditional quantum speed limits are not attainable for many physical
processes, as they tend to be loose and fail to determine the exact time taken
by quantum systems to evolve. To address this, we derive exact quantum speed
limits for the unitary dynamics of pure-state quantum system that outperform
the existing quantum speed limits. Using these exact quantum speed limits, we
can precisely estimate the evolution time for two- and higher-dimensional
quantum systems. Additionally, for both finite- and infinite-dimensional
quantum systems, we derive an improved Mandelstam-Tamm bound for pure states
and show that this bound always saturates for any unitary generated by
self-inverse Hamiltonians. Furthermore, we show that our speed limits establish
an upper bound on the quantum computational circuit complexity. These results
will have a significant impact on our understanding of quantum physics as well
as rapidly developing quantum technologies, such as quantum computing, quantum
control and quantum thermal machines.
Related papers
- Quantum Speed limit on the production of quantumness of observables [0.0]
Non-classical features of quantum systems can degrade when subjected to environment and noise.
We prove speed limits on the quantumness of observable as the norm of the commutator of two given observables.
arXiv Detail & Related papers (2024-09-20T10:02:39Z) - Quantum Acceleration Limit [0.0]
We prove that the quantum acceleration is upper bounded by the fluctuation in the derivative of the Hamiltonian.
This leads to a universal quantum acceleration limit (QAL) which answers the question: What is the minimum time required for a quantum system to be accelerated.
arXiv Detail & Related papers (2023-12-01T18:45:28Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Speed Limit for Change of Basis [55.500409696028626]
We extend the notion of quantum speed limits to collections of quantum states.
For two-qubit systems, we show that the fastest transformation implements two Hadamards and a swap of the qubits simultaneously.
For qutrit systems the evolution time depends on the particular type of the unbiased basis.
arXiv Detail & Related papers (2022-12-23T14:10:13Z) - Stronger Quantum Speed Limit [0.0]
We prove a stronger quantum speed limit (SQSL) for all quantum systems undergoing arbitrary unitary evolution.
The stronger quantum speed limit will have wide range of applications in quantum control, quantum computing and quantum information processing.
arXiv Detail & Related papers (2022-08-10T17:56:51Z) - Generalised quantum speed limit for arbitrary time-continuous evolution [0.0]
We derive a generalised quantum speed limit (GQSL) for arbitrary time-continuous evolution using the geometrical approach of quantum mechanics.
The GQSL is applicable for quantum systems undergoing unitary, non-unitary, completely positive, non-completely positive and relativistic quantum dynamics.
arXiv Detail & Related papers (2022-07-08T21:00:11Z) - Time scaling and quantum speed limit in non-Hermitian Hamiltonians [0.0]
We report on a time scaling technique to enhance the performances of quantum protocols in non-Hermitian systems.
We derive the quantum speed limit in a system governed by a non-Hermitian Hamiltonian.
arXiv Detail & Related papers (2021-06-09T15:56:16Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.