論文の概要: Generating Sense Embeddings for Syntactic and Semantic Analogy for
Portuguese
- arxiv url: http://arxiv.org/abs/2001.07574v1
- Date: Tue, 21 Jan 2020 14:39:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-08 00:01:16.905275
- Title: Generating Sense Embeddings for Syntactic and Semantic Analogy for
Portuguese
- Title(参考訳): ポルトガル語の構文・意味分析のためのセンス埋め込みの生成
- Authors: Jessica Rodrigues da Silva, Helena de Medeiros Caseli
- Abstract要約: 我々は、感覚埋め込みを生成する技術を使用し、ポルトガルで実施された最初の実験を提示する。
本実験は,意味的類似タスクにおいて,感覚ベクトルが従来の単語ベクトルより優れていることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Word embeddings are numerical vectors which can represent words or concepts
in a low-dimensional continuous space. These vectors are able to capture useful
syntactic and semantic information. The traditional approaches like Word2Vec,
GloVe and FastText have a strict drawback: they produce a single vector
representation per word ignoring the fact that ambiguous words can assume
different meanings. In this paper we use techniques to generate sense
embeddings and present the first experiments carried out for Portuguese. Our
experiments show that sense vectors outperform traditional word vectors in
syntactic and semantic analogy tasks, proving that the language resource
generated here can improve the performance of NLP tasks in Portuguese.
- Abstract(参考訳): 単語埋め込みは、単語や概念を低次元連続空間で表現できる数値ベクトルである。
これらのベクトルは、有用な構文的および意味的情報をキャプチャすることができる。
Word2Vec、GloVe、FastTextといった従来のアプローチには厳格な欠点がある。
本稿では,感覚埋め込みを生成する手法を用いて,ポルトガル語による最初の実験を行う。
本実験により, 構文的, 意味的類似タスクにおいて, 感覚ベクトルは従来の単語ベクトルよりも優れており, ポルトガル語におけるNLPタスクの性能を向上させることが証明された。
関連論文リスト
- Backpack Language Models [108.65930795825416]
Backpacksは、強力なモデリング性能と、解釈可能性と制御のためのインターフェースを組み合わせた、新しいニューラルアーキテクチャである。
学習のあと、感覚ベクトルが特殊化され、それぞれが単語の異なる側面を符号化することがわかった。
本稿では,感覚ベクトルに介入し,制御可能なテキスト生成とデバイアスを行うシンプルなアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-05-26T09:26:23Z) - Tsetlin Machine Embedding: Representing Words Using Logical Expressions [10.825099126920028]
本稿では,論理節を自己教師する自動エンコーダについて紹介する。
節は、"black"、"cup"、"hot"のような文脈的な単語からなり、"coffee"のような他の単語を定義する。
我々は,GLoVeを6つの分類タスクで上回り,いくつかの内在的および外在的ベンチマークに対する埋め込み手法の評価を行った。
論文 参考訳(メタデータ) (2023-01-02T15:02:45Z) - Learning Sense-Specific Static Embeddings using Contextualised Word
Embeddings as a Proxy [26.385418377513332]
感覚の文脈導出埋め込み(CDES)を提案する。
CDESは文脈的埋め込みから感覚関連情報を抽出し、それを静的埋め込みに注入し、センス固有の静的埋め込みを生成する。
本報告では,CDESが,現在の最先端感埋め込みに匹敵する性能を示す,感覚特異的な静的埋め込みを正確に学習可能であることを示す。
論文 参考訳(メタデータ) (2021-10-05T17:50:48Z) - Sense representations for Portuguese: experiments with sense embeddings
and deep neural language models [0.0]
教師なしの感覚表現は、その文脈意味をテキストで分析することによって、単語の異なる感覚を誘導することができる。
ポルトガル語への感性埋め込みを創出するための最初の実験について述べる。
論文 参考訳(メタデータ) (2021-08-31T18:07:01Z) - Deriving Word Vectors from Contextualized Language Models using
Topic-Aware Mention Selection [46.97185212695267]
本稿では,この基本戦略に従って単語表現を学習する手法を提案する。
我々は、文脈を符号化するワードベクトルの袋ではなく、文脈化された言語モデル(CLM)を利用する。
この単純な戦略は、単語埋め込みや既存のCLMベースの戦略よりも意味的特性をより予測し、高品質な単語ベクトルに繋がることを示す。
論文 参考訳(メタデータ) (2021-06-15T08:02:42Z) - WOVe: Incorporating Word Order in GloVe Word Embeddings [0.0]
単語をベクトルとして定義することで、機械学習アルゴリズムがテキストを理解し、そこから情報を抽出しやすくなります。
ワードベクトル表現は、単語同義語、単語類似、構文解析など、多くのアプリケーションで使われている。
論文 参考訳(メタデータ) (2021-05-18T15:28:20Z) - Fake it Till You Make it: Self-Supervised Semantic Shifts for
Monolingual Word Embedding Tasks [58.87961226278285]
語彙意味変化をモデル化するための自己教師付きアプローチを提案する。
本手法は,任意のアライメント法を用いて意味変化の検出に利用できることを示す。
3つの異なるデータセットに対する実験結果を用いて,本手法の有用性について述べる。
論文 参考訳(メタデータ) (2021-01-30T18:59:43Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
シンタックスとは異なり、セマンティクスは今日の事前訓練モデルによって表面化されないことを示す。
次に、畳み込みグラフエンコーダを使用して、タスク固有の微調整にセマンティック解析を明示的に組み込む。
論文 参考訳(メタデータ) (2020-12-10T01:27:24Z) - Unsupervised Distillation of Syntactic Information from Contextualized
Word Representations [62.230491683411536]
我々は,ニューラルネットワーク表現における意味論と構造学の非教師なしの絡み合いの課題に取り組む。
この目的のために、構造的に類似しているが意味的に異なる文群を自動的に生成する。
我々は、我々の変換クラスタベクトルが、語彙的意味論ではなく構造的特性によって空間に現れることを実証する。
論文 参考訳(メタデータ) (2020-10-11T15:13:18Z) - Word Rotator's Distance [50.67809662270474]
テキスト類似性を評価する上での鍵となる原則は、単語のアライメントを考慮した2つのテキスト間の意味的重複度を測定することである。
単語ベクトルのノルムは単語の重要度によいプロキシであり、その角度は単語類似度によいプロキシであることを示す。
本稿では,まず単語ベクトルをノルムと方向に分解し,アライメントに基づく類似性を計算する手法を提案する。
論文 参考訳(メタデータ) (2020-04-30T17:48:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。