論文の概要: Exploiting Cloze Questions for Few Shot Text Classification and Natural
Language Inference
- arxiv url: http://arxiv.org/abs/2001.07676v3
- Date: Mon, 25 Jan 2021 10:56:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-08 00:01:04.183718
- Title: Exploiting Cloze Questions for Few Shot Text Classification and Natural
Language Inference
- Title(参考訳): ショットテキストの分類と自然言語推論におけるクローズ問題の利用
- Authors: Timo Schick and Hinrich Sch\"utze
- Abstract要約: Pattern-Exploiting Training (PET)は、入力例をクローゼスタイルのフレーズとして再構成し、言語モデルが与えられたタスクを理解するのに役立つ半教師付きトレーニング手順である。
PETは、低リソース環境における教師付きトレーニングと強力な半教師付きアプローチを大きなマージンで上回る。
- 参考スコア(独自算出の注目度): 14.264737570114631
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Some NLP tasks can be solved in a fully unsupervised fashion by providing a
pretrained language model with "task descriptions" in natural language (e.g.,
Radford et al., 2019). While this approach underperforms its supervised
counterpart, we show in this work that the two ideas can be combined: We
introduce Pattern-Exploiting Training (PET), a semi-supervised training
procedure that reformulates input examples as cloze-style phrases to help
language models understand a given task. These phrases are then used to assign
soft labels to a large set of unlabeled examples. Finally, standard supervised
training is performed on the resulting training set. For several tasks and
languages, PET outperforms supervised training and strong semi-supervised
approaches in low-resource settings by a large margin.
- Abstract(参考訳): いくつかのNLPタスクは、自然言語で"タスク記述"をトレーニング済みの言語モデルを提供することで、完全に教師なしの方法で解決することができる(Radfordら、2019年)。
提案手法では,入力例をクローゼスタイルのフレーズとして再構成し,言語モデルが与えられたタスクを理解するのに役立つ半教師付きトレーニング手法であるPET(Pattern-Exploiting Training)を導入する。
これらのフレーズは、ラベルなしの大きな例にソフトラベルを割り当てるために使われる。
そして、得られた訓練セット上で、標準監督訓練を行う。
いくつかのタスクや言語において、PETは教師付きトレーニングと低リソース環境における強力な半教師付きアプローチを大きなマージンで上回る。
関連論文リスト
- Assessing Phrase Break of ESL Speech with Pre-trained Language Models
and Large Language Models [7.782346535009883]
本研究では,事前学習言語モデル (PLM) と大規模言語モデル (LLM) を用いて,ESL学習者の音声における句分割の評価手法を提案する。
論文 参考訳(メタデータ) (2023-06-08T07:10:39Z) - Unified Demonstration Retriever for In-Context Learning [56.06473069923567]
Unified Demonstration Retriever (textbfUDR)は、幅広いタスクのデモを検索する単一のモデルである。
我々は,高品質な候補を見つけるための反復的なマイニング戦略を備えたマルチタスクリストワイド・トレーニング・フレームワークを提案する。
13のタスクファミリーと複数のデータドメインにわたる30以上のタスクの実験は、UDRがベースラインを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2023-05-07T16:07:11Z) - Bridging the Gap Between Training and Inference of Bayesian Controllable
Language Models [58.990214815032495]
大規模事前学習型言語モデルは、自然言語生成タスクにおいて大きな成功を収めている。
BCLMは制御可能な言語生成において効率的であることが示されている。
本稿では,ミスマッチ問題を少ない計算コストで軽減する制御可能な言語生成のための"Gemini Discriminator"を提案する。
論文 参考訳(メタデータ) (2022-06-11T12:52:32Z) - An Exploration of Prompt Tuning on Generative Spoken Language Model for
Speech Processing Tasks [112.1942546460814]
生成音声言語モデル(GSLM)に基づく音声処理タスクの即時チューニングパラダイムの最初の検討について報告する。
実験結果から, 学習可能なパラメータが少ない音声分類タスクにおいて, 高精度なダウンストリームモデルよりも, 即時チューニング手法が競合性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2022-03-31T03:26:55Z) - AdaPrompt: Adaptive Model Training for Prompt-based NLP [77.12071707955889]
PLMの継続事前学習のための外部データを適応的に検索するAdaPromptを提案する。
5つのNLPベンチマークの実験結果から、AdaPromptは数ショット設定で標準PLMよりも改善可能であることが示された。
ゼロショット設定では、標準のプロンプトベースの手法を26.35%の相対誤差削減で上回ります。
論文 参考訳(メタデータ) (2022-02-10T04:04:57Z) - Learning To Retrieve Prompts for In-Context Learning [33.176481861880724]
本稿では,注釈付きデータとLMを用いたテキスト内学習のためのプロンプトを効率よく検索する手法を提案する。
言語発話を意味表現にマッピングする3つのシーケンス・ツー・シーケンスタスクに対するアプローチを評価する。
論文 参考訳(メタデータ) (2021-12-16T05:17:56Z) - Skill Induction and Planning with Latent Language [94.55783888325165]
我々は、ゴールがハイレベルなサブタスク記述のシーケンスを生成するアクションシーケンスの生成モデルを定式化する。
本稿では、このモデルを、主に注釈のないデモを用いて、名前付きハイレベルなサブタスクのシーケンスに解析する方法について述べる。
訓練されたモデルでは、自然言語コマンドの空間はスキルのライブラリを索引付けする;エージェントはこれらのスキルを使って、新しい目標に適した高いレベルの命令シーケンスを生成する。
論文 参考訳(メタデータ) (2021-10-04T15:36:32Z) - Robust Transfer Learning with Pretrained Language Models through
Adapters [40.45102278979193]
BERTのような大きな事前訓練された言語モデルによる伝達学習は、ほとんどのNLPタスクにおいて支配的なアプローチとなっている。
これらの問題を緩和するために, 単純かつ効果的なアダプタベースのアプローチを提案する。
実験により,このような学習手法が,様々な下流タスクへの伝達学習における安定性と対角的堅牢性の向上につながることが示された。
論文 参考訳(メタデータ) (2021-08-05T02:30:13Z) - COCO-LM: Correcting and Contrasting Text Sequences for Language Model
Pretraining [59.169836983883656]
COCO-LMは、チャレンジングなエラーとテキストシーケンスの変換によって言語モデルを事前学習する新しい自己監視学習フレームワークです。
COCO-LMは、オリジナルのテキストシーケンスでマスク&予測トークンに補助言語モデルを採用しています。
分析の結果,coco-lmのアドバンテージは,困難なトレーニング信号,よりコンテキスト化されたトークン表現,正規化されたシーケンス表現であることがわかった。
論文 参考訳(メタデータ) (2021-02-16T22:24:29Z) - Few-Shot Text Generation with Pattern-Exploiting Training [12.919486518128734]
本稿では,テキスト生成タスクにも基礎となるアイデアが適用可能であることを示す。
最近提案された少数のショットアプローチであるPattern-Exploiting Training(PET)を、テキスト生成タスクで生成言語モデルを微調整するために適用します。
論文 参考訳(メタデータ) (2020-12-22T10:53:07Z) - Self-Supervised Meta-Learning for Few-Shot Natural Language
Classification Tasks [40.97125791174191]
ラベルのないテキストから大規模でリッチなメタ学習タスク分布を生成するための自己教師型手法を提案する。
このメタトレーニングは、言語モデル事前学習の後に微調整を行うよりも、数ショットの一般化に繋がることを示す。
論文 参考訳(メタデータ) (2020-09-17T17:53:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。