論文の概要: An Image Enhancing Pattern-based Sparsity for Real-time Inference on
Mobile Devices
- arxiv url: http://arxiv.org/abs/2001.07710v3
- Date: Sun, 5 Jul 2020 01:22:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-08 04:57:17.034813
- Title: An Image Enhancing Pattern-based Sparsity for Real-time Inference on
Mobile Devices
- Title(参考訳): モバイルデバイス上でのリアルタイム推論のための画像強調パターンベーススパーシティ
- Authors: Xiaolong Ma, Wei Niu, Tianyun Zhang, Sijia Liu, Sheng Lin, Hongjia Li,
Xiang Chen, Jian Tang, Kaisheng Ma, Bin Ren, Yanzhi Wang
- Abstract要約: パターンと接続性を組み合わせた新しい空間空間,すなわちパターンベースの空間空間を導入し,高度に正確かつハードウェアに親しみやすいものにした。
新たなパターンベースの空間性に対する我々のアプローチは,モバイルプラットフォーム上での高効率DNN実行のためのコンパイラ最適化に自然に適合する。
- 参考スコア(独自算出の注目度): 58.62801151916888
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Weight pruning has been widely acknowledged as a straightforward and
effective method to eliminate redundancy in Deep Neural Networks (DNN), thereby
achieving acceleration on various platforms. However, most of the pruning
techniques are essentially trade-offs between model accuracy and regularity
which lead to impaired inference accuracy and limited on-device acceleration
performance. To solve the problem, we introduce a new sparsity dimension,
namely pattern-based sparsity that comprises pattern and connectivity sparsity,
and becoming both highly accurate and hardware friendly. With carefully
designed patterns, the proposed pruning unprecedentedly and consistently
achieves accuracy enhancement and better feature extraction ability on
different DNN structures and datasets, and our pattern-aware pruning framework
also achieves pattern library extraction, pattern selection, pattern and
connectivity pruning and weight training simultaneously. Our approach on the
new pattern-based sparsity naturally fits into compiler optimization for highly
efficient DNN execution on mobile platforms. To the best of our knowledge, it
is the first time that mobile devices achieve real-time inference for the
large-scale DNN models thanks to the unique spatial property of pattern-based
sparsity and the help of the code generation capability of compilers.
- Abstract(参考訳): ウェイトプルーニングはディープニューラルネットワーク(DNN)の冗長性を排除し,様々なプラットフォーム上での高速化を実現するための,単純かつ効果的な方法として広く認められてきた。
しかし, プルーニング技術の大部分は, モデル精度と正則性のトレードオフであり, 推論精度が低下し, デバイス上でのアクセラレーション性能が制限される。
この問題を解決するために,パターンと接続性を組み合わせた新しい空間空間,すなわちパターンベースの空間空間を新たに導入し,高精度かつハードウェアフレンドリな環境を実現する。
また,パターン認識型プルーニングフレームワークでは,パターンライブラリの抽出,パターン選択,パターンおよび接続性プルーニング,重みトレーニングを同時に実現している。
新たなパターンベースの空間性に対する我々のアプローチは,モバイルプラットフォーム上での高効率DNN実行のためのコンパイラ最適化に自然に適合する。
私たちの知る限りでは、モバイルデバイスが大規模なdnnモデルのリアルタイム推論を実現するのは、パターンベースのスパーシティのユニークな空間的特性とコンパイラのコード生成能力の助けを借りて初めてです。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Accelerating Deep Neural Networks via Semi-Structured Activation
Sparsity [0.0]
ネットワークの機能マップにスパシティを爆発させることは、推論のレイテンシを低減する方法の1つです。
そこで本研究では,セミ構造化されたアクティベーション空間を小さなランタイム修正によって活用する手法を提案する。
当社のアプローチでは,ImageNetデータセット上のResNet18モデルに対して,最小精度が1.1%の1.25倍の速度向上を実現している。
論文 参考訳(メタデータ) (2023-09-12T22:28:53Z) - Precision-Recall Divergence Optimization for Generative Modeling with
GANs and Normalizing Flows [54.050498411883495]
本研究では,ジェネレーティブ・アドバイサル・ネットワークや正規化フローなどの生成モデルのための新しいトレーニング手法を開発した。
指定された精度-リコールトレードオフを達成することは、textitPR-divergencesと呼ぶ家族からのユニークな$f$-divergenceを最小化することを意味する。
当社のアプローチは,ImageNetなどのデータセットでテストした場合の精度とリコールの両面で,BigGANのような既存の最先端モデルの性能を向上させる。
論文 参考訳(メタデータ) (2023-05-30T10:07:17Z) - Load-balanced Gather-scatter Patterns for Sparse Deep Neural Networks [20.374784902476318]
モデル重み付けにゼロを導入する方法として, モデル精度と計算効率のトレードオフを良好に提供する方法として, プルーニングが有効であることが示されている。
現代のプロセッサには、高速なオンチップスクラッチパッドメモリと、間接的に負荷を発生させ、そのようなメモリ上の操作を格納する集/散乱エンジンが備わっている。
本研究では,スクラッチパッドメモリと集合/散乱エンジンを利用して,ニューラルネットワークの推論を高速化する,新しいスパースパターン(GSパターン)を提案する。
論文 参考訳(メタデータ) (2021-12-20T22:55:45Z) - Architecture Aware Latency Constrained Sparse Neural Networks [35.50683537052815]
本稿では,CNNモデルの作成と高速化を目的として,遅延制約付きスパースフレームワークを設計する。
また,効率的な計算のための新しいスパース畳み込みアルゴリズムを提案する。
我々のシステム・アルゴリズムの共同設計フレームワークは、リソース制約のあるモバイルデバイス上でのネットワークの精度とレイテンシのフロンティアをはるかに向上させることができる。
論文 参考訳(メタデータ) (2021-09-01T03:41:31Z) - GRIM: A General, Real-Time Deep Learning Inference Framework for Mobile
Devices based on Fine-Grained Structured Weight Sparsity [46.75304109970339]
本稿では、畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)の両方に汎用的な新しいモバイル推論加速フレームワークGRIMを設計する。
ブロックベースカラムロープルーニング(BCR)による微細粒度構造解析手法を提案する。
我々のGRIMフレームワークは、この新たなきめ細かな構造化された空間に基づいて、(a)リアルタイムモバイル推論のためのコンパイラ最適化とコード生成という2つの部分で構成されています。
論文 参考訳(メタデータ) (2021-08-25T03:50:46Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z) - PatDNN: Achieving Real-Time DNN Execution on Mobile Devices with
Pattern-based Weight Pruning [57.20262984116752]
粗粒構造の内部に新しい次元、きめ細かなプルーニングパターンを導入し、これまで知られていなかった設計空間の点を明らかにした。
きめ細かいプルーニングパターンによって高い精度が実現されているため、コンパイラを使ってハードウェア効率を向上し、保証することがユニークな洞察である。
論文 参考訳(メタデータ) (2020-01-01T04:52:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。