Non-linear Onsager relations for Gaussian quantum maps
- URL: http://arxiv.org/abs/2001.07757v1
- Date: Tue, 21 Jan 2020 20:03:55 GMT
- Title: Non-linear Onsager relations for Gaussian quantum maps
- Authors: Domingos S. P. Salazar and Gabriel T. Landi
- Abstract summary: Onsager's relations allow one to express the second law of thermodynamics in terms of the underlying associated currents.
We show that open bosonic Gaussian systems also obey a set of Onsager relations, valid arbitrarily far from equilibrium.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Onsager's relations allow one to express the second law of thermodynamics in
terms of the underlying associated currents. These relations, however, are
usually valid only close to equilibrium. Using a quantum phase space
formulation of the second law, we show that open bosonic Gaussian systems also
obey a set of Onsager relations, valid arbitrarily far from equilibrium. These
relations, however, are found to be given by a more complex non-linear
function, which reduces to the usual quadratic form close to equilibrium. This
non-linearity implies that far from equilibrium, there exists a fundamental
asymmetry between entropy flow from system to bath and vice-versa. The
ramifications of this for applications in driven-dissipative quantum optical
setups are also discussed.
Related papers
- Non-equilibrium dynamics of charged dual-unitary circuits [44.99833362998488]
interplay between symmetries and entanglement in out-of-equilibrium quantum systems is currently at the centre of an intense multidisciplinary research effort.
We show that one can introduce a class of solvable states, which extends that of generic dual unitary circuits.
In contrast to the known class of solvable states, which relax to the infinite temperature state, these states relax to a family of non-trivial generalised Gibbs ensembles.
arXiv Detail & Related papers (2024-07-31T17:57:14Z) - Observation of Nonlinear Response and Onsager Regression in a Photon Bose-Einstein Condensate [34.82692226532414]
The quantum regression theorem states that the correlations of a system at two different times are governed by the same equations of motion as the temporal response of the average values.
Here we experimentally demonstrate that the two-time particle number correlations in a photon Bose-Einstein condensate inside a dye-filled microcavity exhibit the same dynamics as the response of the condensate to a sudden perturbation of the dye molecule bath.
This confirms the regression theorem for a quantum gas and, moreover, establishes a test of this relation in an unconventional form where the perturbation acts on the bath and only the condensate response is monitored.
arXiv Detail & Related papers (2024-03-07T17:59:58Z) - Limiting flux in quantum thermodynamics [0.0]
In quantum systems, entropy production is typically defined as the quantum relative entropy between two states.
We propose a new upper bound for such flux in terms of quantum relative entropy, applicable even far from equilibrium and in the strong coupling regime.
arXiv Detail & Related papers (2023-11-22T17:17:23Z) - Exact asymptotics of long-range quantum correlations in a nonequilibrium steady state [0.0]
We analytically study the scaling of quantum correlation measures on a one-dimensional containing a noninteracting impurity.
We derive the exact form of the subleading logarithmic corrections to the extensive terms of correlation measures.
This echoes the case of equilibrium states, where such logarithmic terms may convey universal information about the physical system.
arXiv Detail & Related papers (2023-10-25T18:00:48Z) - Non-Abelian symmetry can increase entanglement entropy [62.997667081978825]
We quantify the effects of charges' noncommutation on Page curves.
We show analytically and numerically that the noncommuting-charge case has more entanglement.
arXiv Detail & Related papers (2022-09-28T18:00:00Z) - Canonically consistent quantum master equation [68.8204255655161]
We put forth a new class of quantum master equations that correctly reproduce the state of an open quantum system beyond the infinitesimally weak system-bath coupling limit.
Our method is based on incorporating the knowledge of the reduced steady state into its dynamics.
arXiv Detail & Related papers (2022-05-25T15:22:52Z) - Simultaneous Transport Evolution for Minimax Equilibria on Measures [48.82838283786807]
Min-max optimization problems arise in several key machine learning setups, including adversarial learning and generative modeling.
In this work we focus instead in finding mixed equilibria, and consider the associated lifted problem in the space of probability measures.
By adding entropic regularization, our main result establishes global convergence towards the global equilibrium.
arXiv Detail & Related papers (2022-02-14T02:23:16Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - A Nonlinear Master Equation for Open Quantum Systems [0.0]
A nonlinear master equation is derived, reflecting properly the entropy of open quantum systems.
The corresponding nonlinear equation for the Wigner function accounts rigorously for the thermo-quantum entropy.
arXiv Detail & Related papers (2020-10-12T12:19:29Z) - Quantum relaxation in a system of harmonic oscillators with
time-dependent coupling [0.0]
We analyze the relaxation of nonequilibrium initial distributions for a system of coupled one-dimensional harmonic oscillators.
We show that in general the system studied here tends to equilibrium, but the relaxation can be retarded depending on the values of the parameters.
arXiv Detail & Related papers (2020-07-06T12:57:18Z) - Emergent conformal symmetry in non-unitary random dynamics of free
fermions [5.063902536614336]
We present random quantum circuit models for non-unitary quantum dynamics of free fermions in one spatial dimension.
Numerical simulations reveal that the dynamics tends towards steady states with logarithmic violations of the entanglement area law and power law correlation functions.
arXiv Detail & Related papers (2020-04-20T19:09:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.