論文の概要: Machine Learning for Performance-Aware Virtual Network Function
Placement
- arxiv url: http://arxiv.org/abs/2001.07787v1
- Date: Mon, 13 Jan 2020 14:08:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-11 22:57:24.306291
- Title: Machine Learning for Performance-Aware Virtual Network Function
Placement
- Title(参考訳): パフォーマンスを意識した仮想ネットワーク機能配置のための機械学習
- Authors: Dimitrios Michael Manias, Manar Jammal, Hassan Hawilo, Abdallah Shami,
Parisa Heidari, Adel Larabi, Richard Brunner
- Abstract要約: サービス機能チェーン(SFC)を形成する仮想ネットワーク機能インスタンスの効率的な配置から学習する機械学習決定ツリーモデルを開発する。
このモデルは入力としてネットワークからいくつかのパフォーマンス関連の特徴を取り、依存するVNFインスタンス間の遅延を最小限に抑える目的で、ネットワークサーバ上の様々なVNFインスタンスの配置を選択する。
- 参考スコア(独自算出の注目度): 3.5558885788605323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the growing demand for data connectivity, network service providers are
faced with the task of reducing their capital and operational expenses while
simultaneously improving network performance and addressing the increased
connectivity demand. Although Network Function Virtualization (NFV) has been
identified as a solution, several challenges must be addressed to ensure its
feasibility. In this paper, we address the Virtual Network Function (VNF)
placement problem by developing a machine learning decision tree model that
learns from the effective placement of the various VNF instances forming a
Service Function Chain (SFC). The model takes several performance-related
features from the network as an input and selects the placement of the various
VNF instances on network servers with the objective of minimizing the delay
between dependent VNF instances. The benefits of using machine learning are
realized by moving away from a complex mathematical modelling of the system and
towards a data-based understanding of the system. Using the Evolved Packet Core
(EPC) as a use case, we evaluate our model on different data center networks
and compare it to the BACON algorithm in terms of the delay between
interconnected components and the total delay across the SFC. Furthermore, a
time complexity analysis is performed to show the effectiveness of the model in
NFV applications.
- Abstract(参考訳): データ接続の需要が高まる中、ネットワークサービスプロバイダは、ネットワーク性能の向上と接続需要の増加と同時に、資本と運用コストの削減という課題に直面している。
ネットワーク機能仮想化(NFV)はソリューションとして認識されているが、その実現性を保証するためにはいくつかの課題に対処する必要がある。
本稿では,サービス機能チェーン(SFC)を形成する各種VNFインスタンスの効率的な配置から学習する機械学習決定ツリーモデルを開発することにより,仮想ネットワーク機能(VNF)配置問題に対処する。
このモデルは入力としてネットワークからいくつかのパフォーマンス関連の特徴を取り、依存するVNFインスタンス間の遅延を最小限に抑える目的で、ネットワークサーバ上の様々なVNFインスタンスの配置を選択する。
機械学習の利点は、システムの複雑な数学的モデリングから離れ、システムのデータに基づく理解へと移行することで実現される。
ユースケースとしてEvolved Packet Core(EPC)を用いて、異なるデータセンターネットワーク上でモデルを評価し、相互接続されたコンポーネント間の遅延とSFC全体の遅延の観点からBACONアルゴリズムと比較する。
さらに、NFVアプリケーションにおけるモデルの有効性を示すために、時間複雑性解析を行う。
関連論文リスト
- AI Flow at the Network Edge [58.31090055138711]
AI Flowは、デバイス、エッジノード、クラウドサーバ間で利用可能な異種リソースを共同で活用することで、推論プロセスを合理化するフレームワークである。
この記事では、AI Flowのモチベーション、課題、原則を特定するためのポジションペーパーとして機能する。
論文 参考訳(メタデータ) (2024-11-19T12:51:17Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
本稿では、データの不均一性を考慮した無線FLの性能解析と最適化と、無線リソース割り当てについて述べる。
ロス関数の最小化問題を、長期エネルギー消費と遅延の制約の下で定式化し、クライアントスケジューリング、リソース割り当て、ローカルトレーニングエポック数(CRE)を共同で最適化する。
実世界のデータセットの実験により、提案アルゴリズムは学習精度とエネルギー消費の点で他のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-04T04:18:01Z) - Time-sensitive Learning for Heterogeneous Federated Edge Intelligence [52.83633954857744]
フェデレーションエッジインテリジェンス(FEI)システムにおけるリアルタイム機械学習について検討する。
FEIシステムは異種通信と計算資源分布を示す。
本稿では,共有MLモデルの協調学習における全体の実行時間を最小化するために,時間依存型フェデレーションラーニング(TS-FL)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-01-26T08:13:22Z) - Sequential Deep Learning Architectures for Anomaly Detection in Virtual
Network Function Chains [0.0]
サービス機能チェーン(SFC)における仮想ネットワーク機能のための異常検出システム(ADS)
本稿では,チェーン内の時系列パターンと仮想ネットワーク関数(VNF)の逐次パターンを可変長で学習するシーケンシャルディープラーニングモデルを提案する。
論文 参考訳(メタデータ) (2021-09-29T08:47:57Z) - Age of Information Aware VNF Scheduling in Industrial IoT Using Deep
Reinforcement Learning [9.780232937571599]
深部強化学習(DRL)はそのような問題を解決するための有効な方法として現れている。
本論文では, 単一エージェントの低複素複素アクションアクター-クリティカルRLを用いて離散的および連続的なアクションの両方をカバーする。
その後、エージェントが互いに協力するマルチエージェントDRLスキームにソリューションを拡張します。
論文 参考訳(メタデータ) (2021-05-10T09:04:49Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
本稿では、離散コサイン変換(dct)領域の係数に応じて入力を複数の部分に分割する新しい周波数認識動的ネットワークについて検討する。
実際、高周波部は高価な操作で処理され、低周波部は計算負荷を軽減するために安価な操作が割り当てられる。
ベンチマークSISRモデルおよびデータセット上での実験は、周波数認識動的ネットワークが様々なSISRニューラルネットワークに使用できることを示している。
論文 参考訳(メタデータ) (2021-03-15T12:54:26Z) - Proactive and AoI-aware Failure Recovery for Stateful NFV-enabled
Zero-Touch 6G Networks: Model-Free DRL Approach [0.0]
ゼロタッチPFR(ZT-PFR)と呼ばれるモデルフリー深部強化学習(DRL)に基づくアクティブ障害回復フレームワークを提案する。
ZT-PFRは、ネットワーク機能仮想化(NFV)対応ネットワークにおける組み込みステートフル仮想ネットワーク機能(VNF)用です。
論文 参考訳(メタデータ) (2021-02-02T21:40:35Z) - A Machine Learning-Based Migration Strategy for Virtual Network Function
Instances [3.7783523378336104]
我々は、VNFインスタンスのマイグレーション戦略であるVNNIM(VNF Neural Network for Instance Migration)を開発した。
VNNIMは、移行後のサーバを99.07%の精度で予測するのに非常に効果的である。
しかし、VNNIMの最大の利点は、ランタイム分析によって強調される実行時の効率である。
論文 参考訳(メタデータ) (2020-06-15T15:03:27Z) - Depth-Optimized Delay-Aware Tree (DO-DAT) for Virtual Network Function
Placement [3.5584529568201377]
ネットワーク機能(NFV)はソリューションとして認識されているが、その実現性を保証するためにはいくつかの課題に対処する必要がある。
本稿では,VNF(Virtual Network)配置問題に対する機械学習による解決策を提案する。
論文 参考訳(メタデータ) (2020-06-02T17:18:20Z) - Toward fast and accurate human pose estimation via soft-gated skip
connections [97.06882200076096]
本稿では,高精度かつ高効率な人間のポーズ推定について述べる。
我々は、最先端技術よりも精度と効率を両立させる文脈において、この設計選択を再分析する。
本モデルでは,MPII と LSP のデータセットから最先端の結果が得られる。
論文 参考訳(メタデータ) (2020-02-25T18:51:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。