論文の概要: DeepFL-IQA: Weak Supervision for Deep IQA Feature Learning
- arxiv url: http://arxiv.org/abs/2001.08113v1
- Date: Mon, 20 Jan 2020 15:13:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-08 05:39:54.041598
- Title: DeepFL-IQA: Weak Supervision for Deep IQA Feature Learning
- Title(参考訳): DeepFL-IQA:Deep IQA機能学習のための弱スーパービジョン
- Authors: Hanhe Lin, Vlad Hosu, Dietmar Saupe
- Abstract要約: 人工歪み画像のIQAに適した特徴を学習するための新しいIQAデータセットと弱い教師付き特徴学習手法を提案する。
データセットであるKADIS-700kは、14万枚の原像と25種類の歪みがあり、合計で700kの歪んだバージョンで構成されている。
提案手法はDeepFL-IQAと呼ばれ,他の特徴に基づくノン参照IQA法よりも優れており,KADID-10k上の全参照IQA法よりも優れている。
- 参考スコア(独自算出の注目度): 8.035521056416242
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-level deep-features have been driving state-of-the-art methods for
aesthetics and image quality assessment (IQA). However, most IQA benchmarks are
comprised of artificially distorted images, for which features derived from
ImageNet under-perform. We propose a new IQA dataset and a weakly supervised
feature learning approach to train features more suitable for IQA of
artificially distorted images. The dataset, KADIS-700k, is far more extensive
than similar works, consisting of 140,000 pristine images, 25 distortions
types, totaling 700k distorted versions. Our weakly supervised feature learning
is designed as a multi-task learning type training, using eleven existing
full-reference IQA metrics as proxies for differential mean opinion scores. We
also introduce a benchmark database, KADID-10k, of artificially degraded
images, each subjectively annotated by 30 crowd workers. We make use of our
derived image feature vectors for (no-reference) image quality assessment by
training and testing a shallow regression network on this database and five
other benchmark IQA databases. Our method, termed DeepFL-IQA, performs better
than other feature-based no-reference IQA methods and also better than all
tested full-reference IQA methods on KADID-10k. For the other five benchmark
IQA databases, DeepFL-IQA matches the performance of the best existing
end-to-end deep learning-based methods on average.
- Abstract(参考訳): マルチレベル深層機能は、美学と画質評価(iqa)のための最先端の手法を駆り立てている。
しかし、ほとんどのIQAベンチマークは、ImageNetのアンダーパフォーマンスから派生した特徴を持つ、人工的に歪んだ画像で構成されている。
人工歪み画像のIQAに適した特徴を学習するための新しいIQAデータセットと弱い教師付き特徴学習手法を提案する。
データセットであるKADIS-700kは、14万枚の原像と25種類の歪みがあり、合計で700kの歪んだバージョンで構成されている。
我々の弱教師付き特徴学習はマルチタスク学習型学習として設計されており、11の既存の全参照IQAメトリクスを差分平均意見スコアのプロキシとして使用しています。
また,30名の観衆が主観的にアノテートした画像のベンチマークデータベースKADID-10kを導入する。
我々は、このデータベースおよび他の5つのベンチマークIQAデータベース上で、浅い回帰ネットワークをトレーニングし、テストすることで、画像品質評価(ノン参照)に画像特徴ベクトルを用いる。
提案手法はDeepFL-IQAと呼ばれ,他の特徴に基づくノン参照IQA法よりも優れており,KADID-10k上の全参照IQA法よりも優れている。
残りの5つのベンチマークIQAデータベースでは、DeepFL-IQAは、既存の最高のエンドツーエンドのディープラーニングベースのメソッドのパフォーマンスと平均的に一致します。
関連論文リスト
- Grounding-IQA: Multimodal Language Grounding Model for Image Quality Assessment [69.07445098168344]
我々は,新しい画像品質評価(IQA)タスクパラダイム,グラウンドング-IQAを導入する。
Grounding-IQAは2つのサブタスクからなる: Grounding-IQA-description (GIQA-DES) と visual question answering (GIQA-VQA)。
グラウンドディング-IQAを実現するために,提案した自動アノテーションパイプラインを通じて対応するデータセットGIQA-160Kを構築した。
提案したタスクパラダイム,データセット,ベンチマークが,よりきめ細かいIQAアプリケーションを促進することを示す。
論文 参考訳(メタデータ) (2024-11-26T09:03:16Z) - Boosting CLIP Adaptation for Image Quality Assessment via Meta-Prompt Learning and Gradient Regularization [55.09893295671917]
本稿では,Gdient-Regulated Meta-Prompt IQA Framework (GRMP-IQA)を紹介する。
GRMP-IQAはMeta-Prompt事前学習モジュールとQuality-Aware Gradient Regularizationの2つの主要なモジュールから構成されている。
5つの標準BIQAデータセットの実験は、限られたデータ設定下での最先端BIQA手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-09-09T07:26:21Z) - UHD-IQA Benchmark Database: Pushing the Boundaries of Blind Photo Quality Assessment [4.563959812257119]
固定幅3840ピクセルの6073 UHD-1 (4K)画像からなる画像品質評価データセットを提案する。
私たちの作品は、高い技術品質の高度に美的な写真に焦点を当てており、文学のギャップを埋めています。
データセットには、クラウドソーシング調査を通じて得られた知覚的品質評価が注釈付けされている。
論文 参考訳(メタデータ) (2024-06-25T11:30:31Z) - DP-IQA: Utilizing Diffusion Prior for Blind Image Quality Assessment in the Wild [54.139923409101044]
野生のブラインド画像品質評価(IQA)は重大な課題を呈している。
大規模なトレーニングデータの収集が困難であることを考えると、厳密な一般化モデルを開発するために限られたデータを活用することは、未解決の問題である。
事前訓練されたテキスト・ツー・イメージ(T2I)拡散モデルの堅牢な画像認識能力により,新しいIQA法,拡散先行に基づくIQAを提案する。
論文 参考訳(メタデータ) (2024-05-30T12:32:35Z) - Cross-IQA: Unsupervised Learning for Image Quality Assessment [3.2287957986061038]
本稿では,視覚変換器(ViT)モデルに基づく非参照画像品質評価(NR-IQA)手法を提案する。
提案手法は,ラベルのない画像データから画像品質の特徴を学習することができる。
実験結果から,Cross-IQAは低周波劣化情報の評価において最先端の性能が得られることが示された。
論文 参考訳(メタデータ) (2024-05-07T13:35:51Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
画像品質評価(IQA)モデルは意味情報から大きな恩恵を受け、異なる種類のオブジェクトを明瞭に扱うことができる。
十分な注釈付きデータが不足している従来の手法では、セマンティックな認識を得るために、CLIPイメージテキスト事前学習モデルをバックボーンとして使用していた。
近年のアプローチでは、このミスマッチに即時技術を使って対処する試みがあるが、これらの解決策には欠点がある。
本稿では、IQAのための革新的なマルチモーダルプロンプトベースの手法を提案する。
論文 参考訳(メタデータ) (2024-04-23T11:45:32Z) - Depicting Beyond Scores: Advancing Image Quality Assessment through Multi-modal Language Models [28.194638379354252]
本稿では,従来のスコアベース手法の制約を克服するDepicted Image Quality Assessment法(DepictQA)を提案する。
DepictQAは、マルチモーダルな大規模言語モデルを利用することで、詳細な言語ベースの人間のような画像品質の評価を可能にする。
これらの結果はマルチモーダルIQA法の研究の可能性を示している。
論文 参考訳(メタデータ) (2023-12-14T14:10:02Z) - Evaluating the Stability of Deep Image Quality Assessment With Respect
to Image Scaling [43.291753358414255]
画像品質評価(IQA)は画像処理タスクの基本的な指標である。
本稿では,画像スケールがIQAの性能に影響を及ぼす要因であることを示す。
論文 参考訳(メタデータ) (2022-07-20T12:44:13Z) - Continual Learning for Blind Image Quality Assessment [80.55119990128419]
ブラインド画像品質評価(BIQA)モデルは、サブポピュレーションシフトに継続的に適応できない。
最近の研究では、利用可能なすべての人間評価のIQAデータセットの組み合わせに関するBIQAメソッドのトレーニングが推奨されている。
モデルがIQAデータセットのストリームから継続的に学習するBIQAの継続的学習を策定する。
論文 参考訳(メタデータ) (2021-02-19T03:07:01Z) - MetaIQA: Deep Meta-learning for No-Reference Image Quality Assessment [73.55944459902041]
本稿では,深層メタラーニングに基づく非参照IQA尺度を提案する。
まず、様々な歪みに対してNR-IQAタスクを収集する。
次にメタラーニングを用いて、多彩な歪みによって共有される事前知識を学習する。
大規模な実験により、提案された計量は最先端の技術を大きなマージンで上回ることを示した。
論文 参考訳(メタデータ) (2020-04-11T23:36:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。