Classically Simulating Quantum Circuits with Local Depolarizing Noise
- URL: http://arxiv.org/abs/2001.08373v1
- Date: Thu, 23 Jan 2020 05:10:41 GMT
- Title: Classically Simulating Quantum Circuits with Local Depolarizing Noise
- Authors: Yasuhiro Takahashi, Yuki Takeuchi, Seiichiro Tani
- Abstract summary: We study the effect of noise on the classical simulatability of quantum circuits.
We show that the presence of small noise drastically affects the classical simulatability of CT-ECS circuits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the effect of noise on the classical simulatability of quantum
circuits defined by computationally tractable (CT) states and efficiently
computable sparse (ECS) operations. Examples of such circuits, which we call
CT-ECS circuits, are IQP, Clifford Magic, and conjugated Clifford circuits.
This means that there exist various CT-ECS circuits such that their output
probability distributions are anti-concentrated and not classically simulatable
in the noise-free setting (under plausible assumptions). First, we consider a
noise model where a depolarizing channel with an arbitrarily small constant
rate is applied to each qubit at the end of computation. We show that, under
this noise model, if an approximate value of the noise rate is known, any
CT-ECS circuit with an anti-concentrated output probability distribution is
classically simulatable. This indicates that the presence of small noise
drastically affects the classical simulatability of CT-ECS circuits. Then, we
consider an extension of the noise model where the noise rate can vary with
each qubit, and provide a similar sufficient condition for classically
simulating CT-ECS circuits with anti-concentrated output probability
distributions.
Related papers
- A polynomial-time classical algorithm for noisy quantum circuits [1.2708457954150887]
We provide a-time classical algorithm for noisy quantum circuits.
Our approach is based upon the intuition that noise exponentially damps non-local correlations.
For constant noise rates, any quantum circuit for which error mitigation is efficient on most input states, is also classically simulable on most input states.
arXiv Detail & Related papers (2024-07-17T17:48:39Z) - Accurate and Honest Approximation of Correlated Qubit Noise [39.58317527488534]
We propose an efficient systematic construction of approximate noise channels, where their accuracy can be enhanced by incorporating noise components with higher qubit-qubit correlation degree.
We find that, for realistic noise strength typical for fixed-frequency superconducting qubits, correlated noise beyond two-qubit correlation can significantly affect the code simulation accuracy.
arXiv Detail & Related papers (2023-11-15T19:00:34Z) - Noise Decoupling for State Transfer in Continuous Variable Systems [0.0]
We consider a toy model of noise channels, given by a random mixture of unitary operations, for state transfer problems with continuous variables.
For random noise, the target state can be recovered while for the general noise profile, the annihilation can be done when the interventions are fast compared to the noise.
We show that the state at the transmitter can be written as a convolution of the target state and a filter function characterizing the noise manipulation scheme.
arXiv Detail & Related papers (2023-07-05T06:54:40Z) - Classical simulations of noisy variational quantum circuits [0.0]
Noisely affects quantum computations so that they not only become less accurate but also easier to simulate classically as systems scale up.
We construct a classical simulation algorithm, LOWESA, for estimating expectation values of noisy parameterised quantum circuits.
arXiv Detail & Related papers (2023-06-08T17:52:30Z) - Stabilizing and improving qubit coherence by engineering noise spectrum
of two-level systems [52.77024349608834]
Superconducting circuits are a leading platform for quantum computing.
Charge fluctuators inside amorphous oxide layers contribute to both low-frequency $1/f$ charge noise and high-frequency dielectric loss.
We propose to mitigate those harmful effects by engineering the relevant TLS noise spectral densities.
arXiv Detail & Related papers (2022-06-21T18:37:38Z) - Efficient simulation of Gottesman-Kitaev-Preskill states with Gaussian
circuits [68.8204255655161]
We study the classical simulatability of Gottesman-Kitaev-Preskill (GKP) states in combination with arbitrary displacements, a large set of symplectic operations and homodyne measurements.
For these types of circuits, neither continuous-variable theorems based on the non-negativity of quasi-probability distributions nor discrete-variable theorems can be employed to assess the simulatability.
arXiv Detail & Related papers (2022-03-21T17:57:02Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Mitigating depolarizing noise on quantum computers with noise-estimation
circuits [1.3375143521862154]
We present a method to mitigate the depolarizing noise by first estimating its rate with a noise-estimation circuit.
We find that our approach in combination with readout-error correction, compiling, randomized, and zero-noise extrapolation produces results close to exact results even for circuits containing hundreds of CNOT gates.
arXiv Detail & Related papers (2021-03-15T17:59:06Z) - Shape Matters: Understanding the Implicit Bias of the Noise Covariance [76.54300276636982]
Noise in gradient descent provides a crucial implicit regularization effect for training over parameterized models.
We show that parameter-dependent noise -- induced by mini-batches or label perturbation -- is far more effective than Gaussian noise.
Our analysis reveals that parameter-dependent noise introduces a bias towards local minima with smaller noise variance, whereas spherical Gaussian noise does not.
arXiv Detail & Related papers (2020-06-15T18:31:02Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z) - Efficient classical simulation of random shallow 2D quantum circuits [104.50546079040298]
Random quantum circuits are commonly viewed as hard to simulate classically.
We show that approximate simulation of typical instances is almost as hard as exact simulation.
We also conjecture that sufficiently shallow random circuits are efficiently simulable more generally.
arXiv Detail & Related papers (2019-12-31T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.