When Wireless Security Meets Machine Learning: Motivation, Challenges,
and Research Directions
- URL: http://arxiv.org/abs/2001.08883v1
- Date: Fri, 24 Jan 2020 05:07:39 GMT
- Title: When Wireless Security Meets Machine Learning: Motivation, Challenges,
and Research Directions
- Authors: Yalin E. Sagduyu, Yi Shi, Tugba Erpek, William Headley, Bryse Flowers,
George Stantchev, Zhuo Lu
- Abstract summary: Wireless systems are vulnerable to various attacks such as jamming and eavesdropping due to the shared and broadcast nature of wireless medium.
To support both attack and defense strategies, machine learning (ML) provides automated means to learn from and adapt to wireless communication characteristics.
This article discusses motivation, background, and scope of research efforts that bridge ML and wireless security.
- Score: 14.040811989589741
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Wireless systems are vulnerable to various attacks such as jamming and
eavesdropping due to the shared and broadcast nature of wireless medium. To
support both attack and defense strategies, machine learning (ML) provides
automated means to learn from and adapt to wireless communication
characteristics that are hard to capture by hand-crafted features and models.
This article discusses motivation, background, and scope of research efforts
that bridge ML and wireless security. Motivated by research directions surveyed
in the context of ML for wireless security, ML-based attack and defense
solutions and emerging adversarial ML techniques in the wireless domain are
identified along with a roadmap to foster research efforts in bridging ML and
wireless security.
Related papers
- Toward Mixture-of-Experts Enabled Trustworthy Semantic Communication for 6G Networks [82.3753728955968]
We introduce a novel Mixture-of-Experts (MoE)-based SemCom system.
This system comprises a gating network and multiple experts, each specializing in different security challenges.
The gating network adaptively selects suitable experts to counter heterogeneous attacks based on user-defined security requirements.
A case study in vehicular networks demonstrates the efficacy of the MoE-based SemCom system.
arXiv Detail & Related papers (2024-09-24T03:17:51Z) - WirelessLLM: Empowering Large Language Models Towards Wireless Intelligence [16.722524706176767]
Large Language Models (LLMs) have sparked interest in their potential to revolutionize wireless communication systems.
Existing studies on LLMs for wireless systems are limited to a direct application for telecom language understanding.
This paper proposes WirelessLLM, a comprehensive framework for adapting and enhancing LLMs to address the unique challenges and requirements of wireless communication networks.
arXiv Detail & Related papers (2024-05-27T11:18:25Z) - Magmaw: Modality-Agnostic Adversarial Attacks on Machine Learning-Based
Wireless Communication Systems [23.183028451271745]
Magmaw is the first black-box attack methodology capable of generating universal adversarial perturbations for any multimodal signal transmitted over a wireless channel.
For proof-of-concept evaluation, we build a real-time wireless attack platform using a software-defined radio system.
Surprisingly, Magmaw is also effective against encrypted communication channels and conventional communications.
arXiv Detail & Related papers (2023-11-01T00:33:59Z) - Vulnerability of Machine Learning Approaches Applied in IoT-based Smart Grid: A Review [51.31851488650698]
Machine learning (ML) sees an increasing prevalence of being used in the internet-of-things (IoT)-based smart grid.
adversarial distortion injected into the power signal will greatly affect the system's normal control and operation.
It is imperative to conduct vulnerability assessment for MLsgAPPs applied in the context of safety-critical power systems.
arXiv Detail & Related papers (2023-08-30T03:29:26Z) - Downlink Power Allocation in Massive MIMO via Deep Learning: Adversarial
Attacks and Training [62.77129284830945]
This paper considers a regression problem in a wireless setting and shows that adversarial attacks can break the DL-based approach.
We also analyze the effectiveness of adversarial training as a defensive technique in adversarial settings and show that the robustness of DL-based wireless system against attacks improves significantly.
arXiv Detail & Related papers (2022-06-14T04:55:11Z) - Machine Learning for Security in Vehicular Networks: A Comprehensive
Survey [4.010371060637208]
We present a comprehensive survey of ML-based techniques for different security issues in vehicular networks.
We propose a taxonomy of security attacks in vehicular networks and discuss various security challenges and requirements.
We explain the solution approaches and working principles of these ML techniques in addressing various security challenges.
arXiv Detail & Related papers (2021-05-31T15:15:03Z) - Distributed Learning in Wireless Networks: Recent Progress and Future
Challenges [170.35951727508225]
Next-generation wireless networks will enable many machine learning (ML) tools and applications to analyze various types of data collected by edge devices.
Distributed learning and inference techniques have been proposed as a means to enable edge devices to collaboratively train ML models without raw data exchanges.
This paper provides a comprehensive study of how distributed learning can be efficiently and effectively deployed over wireless edge networks.
arXiv Detail & Related papers (2021-04-05T20:57:56Z) - Transfer Learning for Future Wireless Networks: A Comprehensive Survey [49.746711269488515]
This article aims to provide a comprehensive survey on applications of Transfer Learning in wireless networks.
We first provide an overview of TL including formal definitions, classification, and various types of TL techniques.
We then discuss diverse TL approaches proposed to address emerging issues in wireless networks.
arXiv Detail & Related papers (2021-02-15T14:19:55Z) - Distributed Machine Learning for Wireless Communication Networks:
Techniques, Architectures, and Applications [1.647426214278143]
Distributed machine learning (DML) techniques have been increasingly applied to wireless communications.
The unique features of wireless systems, such as large scale, geographically dispersed deployment, user mobility, and massive amount of data, give rise to new challenges in the design of DML techniques.
This survey bridges the gap by providing a contemporary and comprehensive survey of DML techniques with a focus on wireless networks.
arXiv Detail & Related papers (2020-12-02T19:53:32Z) - Wireless for Machine Learning [91.13476340719087]
We give an exhaustive review of the state-of-the-art wireless methods that are specifically designed to support machine learning services over distributed datasets.
There are two clear themes within the literature, analog over-the-air computation and digital radio resource management optimized for ML.
This survey gives a comprehensive introduction to these methods, reviews the most important works, highlights open problems, and discusses application scenarios.
arXiv Detail & Related papers (2020-08-31T11:09:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.