OFDM-based JCAS under Attack: The Dual Threat of Spoofing and Jamming in WLAN Sensing
- URL: http://arxiv.org/abs/2501.06798v1
- Date: Sun, 12 Jan 2025 12:41:17 GMT
- Title: OFDM-based JCAS under Attack: The Dual Threat of Spoofing and Jamming in WLAN Sensing
- Authors: Hasan Can Yildirim, Musa Furkan Keskin, Henk Wymeersch, Francois Horlin,
- Abstract summary: This study reveals the vulnerabilities of Wireless Local Area Networks (WLAN) sensing, under the scope of joint communication and sensing (JCAS)
We show how deceptive jammers can manipulate the range-Doppler map (RDM) by altering signal integrity.
Our findings propose several jamming strategies that vary in complexity and detectability.
- Score: 16.63099126704722
- License:
- Abstract: This study reveals the vulnerabilities of Wireless Local Area Networks (WLAN) sensing, under the scope of joint communication and sensing (JCAS), focusing on target spoofing and deceptive jamming techniques. We use orthogonal frequency-division multiplexing (OFDM) to explore how adversaries can exploit WLAN's sensing capabilities to inject false targets and disrupt normal operations. Unlike traditional methods that require sophisticated digital radio-frequency memory hardware, we demonstrate that much simpler software-defined radios can effectively serve as deceptive jammers in WLAN settings. Through comprehensive modeling and practical experiments, we show how deceptive jammers can manipulate the range-Doppler map (RDM) by altering signal integrity, thereby posing significant security threats to OFDM-based JCAS systems. Our findings comprehensively evaluate jammer impact on RDMs and propose several jamming strategies that vary in complexity and detectability.
Related papers
- Securing Distributed Network Digital Twin Systems Against Model Poisoning Attacks [19.697853431302768]
Digital twins (DTs) embody real-time monitoring, predictive, and enhanced decision-making capabilities.
This study investigates the security challenges in distributed network DT systems, which potentially undermine the reliability of subsequent network applications.
arXiv Detail & Related papers (2024-07-02T03:32:09Z) - DT-DDNN: A Physical Layer Security Attack Detector in 5G RF Domain for
CAVs [11.15939066175832]
jamming attacks pose substantial risks to the 5G network.
This work presents a novel deep learning-based technique for detecting jammers in CAV networks.
Results show that the proposed method achieves 96.4% detection rate in extra low jamming power.
arXiv Detail & Related papers (2024-03-05T04:29:31Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Real-Time Zero-Day Intrusion Detection System for Automotive Controller
Area Network on FPGAs [13.581341206178525]
This paper presents an unsupervised-learning-based convolutional autoencoder architecture for detecting zero-day attacks.
We quantise the model using Vitis-AI tools from AMD/Xilinx targeting a resource-constrained Zynq Ultrascale platform.
The proposed model successfully achieves equal or higher classification accuracy (> 99.5%) on unseen DoS, fuzzing, and spoofing attacks.
arXiv Detail & Related papers (2024-01-19T14:36:01Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - Magmaw: Modality-Agnostic Adversarial Attacks on Machine Learning-Based Wireless Communication Systems [21.878711118514342]
Magmaw is a novel wireless attack methodology capable of generating universal adversarial perturbations for any multimodal signal transmitted over a wireless channel.
We show that Magmaw causes significant performance degradation even in the presence of strong defense mechanisms.
arXiv Detail & Related papers (2023-11-01T00:33:59Z) - Mixture GAN For Modulation Classification Resiliency Against Adversarial
Attacks [55.92475932732775]
We propose a novel generative adversarial network (GAN)-based countermeasure approach.
GAN-based aims to eliminate the adversarial attack examples before feeding to the DNN-based classifier.
Simulation results show the effectiveness of our proposed defense GAN so that it could enhance the accuracy of the DNN-based AMC under adversarial attacks to 81%, approximately.
arXiv Detail & Related papers (2022-05-29T22:30:32Z) - GraSens: A Gabor Residual Anti-aliasing Sensing Framework for Action
Recognition using WiFi [52.530330427538885]
WiFi-based human action recognition (HAR) has been regarded as a promising solution in applications such as smart living and remote monitoring.
We propose an end-to-end Gabor residual anti-aliasing sensing network (GraSens) to directly recognize the actions using the WiFi signals from the wireless devices in diverse scenarios.
arXiv Detail & Related papers (2022-05-24T10:20:16Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
Monitoring wireless spectrum over spatial, temporal, and frequency domains will become a critical feature in beyond-5G and 6G communication technologies.
In this paper, we present a Generative Adversarial Network (GAN) machine learning model to interpolate irregularly distributed measurements across the spatial domain.
arXiv Detail & Related papers (2021-11-23T22:25:10Z) - Adversarial Attacks on Deep Learning Based Power Allocation in a Massive
MIMO Network [62.77129284830945]
We show that adversarial attacks can break DL-based power allocation in the downlink of a massive multiple-input-multiple-output (maMIMO) network.
We benchmark the performance of these attacks and show that with a small perturbation in the input of the neural network (NN), the white-box attacks can result in infeasible solutions up to 86%.
arXiv Detail & Related papers (2021-01-28T16:18:19Z) - Multi-stage Jamming Attacks Detection using Deep Learning Combined with
Kernelized Support Vector Machine in 5G Cloud Radio Access Networks [17.2528983535773]
This research focuses on deploying a multi-stage machine learning-based intrusion detection (ML-IDS) in 5G C-RAN.
It can detect and classify four types of jamming attacks: constant jamming, random jamming, jamming, and reactive jamming.
The final classification accuracy of attacks is 94.51% with a 7.84% false negative rate.
arXiv Detail & Related papers (2020-04-13T17:21:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.