Joint Geographical and Temporal Modeling based on Matrix Factorization
for Point-of-Interest Recommendation
- URL: http://arxiv.org/abs/2001.08961v1
- Date: Fri, 24 Jan 2020 12:25:37 GMT
- Title: Joint Geographical and Temporal Modeling based on Matrix Factorization
for Point-of-Interest Recommendation
- Authors: Hossein A. Rahmani, Mohammad Aliannejadi, Mitra Baratchi, Fabio
Crestani
- Abstract summary: Point-of-Interest (POI) recommendation has become an important task, which learns the users' preferences and mobility patterns to recommend POIs.
Previous studies show that incorporating contextual information such as geographical and temporal influences is necessary to improve POI recommendation.
- Score: 6.346772579930929
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the popularity of Location-based Social Networks, Point-of-Interest
(POI) recommendation has become an important task, which learns the users'
preferences and mobility patterns to recommend POIs. Previous studies show that
incorporating contextual information such as geographical and temporal
influences is necessary to improve POI recommendation by addressing the data
sparsity problem. However, existing methods model the geographical influence
based on the physical distance between POIs and users, while ignoring the
temporal characteristics of such geographical influences. In this paper, we
perform a study on the user mobility patterns where we find out that users'
check-ins happen around several centers depending on their current temporal
state. Next, we propose a spatio-temporal activity-centers algorithm to model
users' behavior more accurately. Finally, we demonstrate the effectiveness of
our proposed contextual model by incorporating it into the matrix factorization
model under two different settings: i) static and ii) temporal. To show the
effectiveness of our proposed method, which we refer to as STACP, we conduct
experiments on two well-known real-world datasets acquired from Gowalla and
Foursquare LBSNs. Experimental results show that the STACP model achieves a
statistically significant performance improvement, compared to the
state-of-the-art techniques. Also, we demonstrate the effectiveness of
capturing geographical and temporal information for modeling users' activity
centers and the importance of modeling them jointly.
Related papers
- Bayes-enhanced Multi-view Attention Networks for Robust POI
Recommendation [81.4999547454189]
Existing works assume the available POI check-ins reported by users are the ground-truth depiction of user behaviors.
In real application scenarios, the check-in data can be rather unreliable due to both subjective and objective causes.
We propose a Bayes-enhanced Multi-view Attention Network to address the uncertainty factors of the user check-ins.
arXiv Detail & Related papers (2023-11-01T12:47:38Z) - Reconstructing Spatiotemporal Data with C-VAEs [49.1574468325115]
Conditional continuous representation of moving regions is commonly used.
In this work, we explore the capabilities of Conditional Varitemporal Autoencoder (C-VAE) models to generate realistic representations of regions' evolution.
arXiv Detail & Related papers (2023-07-12T15:34:10Z) - Self-supervised Graph-based Point-of-interest Recommendation [66.58064122520747]
Next Point-of-Interest (POI) recommendation has become a prominent component in location-based e-commerce.
We propose a Self-supervised Graph-enhanced POI Recommender (S2GRec) for next POI recommendation.
In particular, we devise a novel Graph-enhanced Self-attentive layer to incorporate the collaborative signals from both global transition graph and local trajectory graphs.
arXiv Detail & Related papers (2022-10-22T17:29:34Z) - Temporal Relevance Analysis for Video Action Models [70.39411261685963]
We first propose a new approach to quantify the temporal relationships between frames captured by CNN-based action models.
We then conduct comprehensive experiments and in-depth analysis to provide a better understanding of how temporal modeling is affected.
arXiv Detail & Related papers (2022-04-25T19:06:48Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
We propose a novel framework to promote cascade size prediction by enhancing the user preference modeling.
Our end-to-end method makes the user activating process of information diffusion more adaptive and accurate.
arXiv Detail & Related papers (2022-04-18T09:25:06Z) - A Systematic Analysis on the Impact of Contextual Information on
Point-of-Interest Recommendation [6.346772579930929]
We propose different contextual models and analyze the fusion of different major contextual information in POI recommendation.
Our results indicate that while modeling geographical and temporal influences can improve recommendation quality, fusing all other contextual information into a recommendation model is not always the best strategy.
arXiv Detail & Related papers (2022-01-20T12:41:12Z) - Leveraging Social Influence based on Users Activity Centers for
Point-of-Interest Recommendation [2.896192909215469]
We introduce two levels of friendship based on explicit friendship networks and high check-in overlap between users.
The results show that our proposed model outperforms the state-of-the-art on two real-world datasets.
arXiv Detail & Related papers (2022-01-10T16:46:27Z) - Modelling of Bi-directional Spatio-Temporal Dependence and Users'
Dynamic Preferences for Missing POI Check-in Identification [38.51964956686177]
We develop a model, named Bi-STDDP, which can integrate bi-directional-temporal dependence and users' dynamic preferences.
Results demonstrate significant improvements of our model compared with state-of-the-art methods.
arXiv Detail & Related papers (2021-12-31T03:54:37Z) - Modeling long-term interactions to enhance action recognition [81.09859029964323]
We propose a new approach to under-stand actions in egocentric videos that exploits the semantics of object interactions at both frame and temporal levels.
We use a region-based approach that takes as input a primary region roughly corresponding to the user hands and a set of secondary regions potentially corresponding to the interacting objects.
The proposed approach outperforms the state-of-the-art in terms of action recognition on standard benchmarks.
arXiv Detail & Related papers (2021-04-23T10:08:15Z) - An Enhanced Adversarial Network with Combined Latent Features for
Spatio-Temporal Facial Affect Estimation in the Wild [1.3007851628964147]
This paper proposes a novel model that efficiently extracts both spatial and temporal features of the data by means of its enhanced temporal modelling based on latent features.
Our proposed model consists of three major networks, coined Generator, Discriminator, and Combiner, which are trained in an adversarial setting combined with curriculum learning to enable our adaptive attention modules.
arXiv Detail & Related papers (2021-02-18T04:10:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.