SPOT-Trip: Dual-Preference Driven Out-of-Town Trip Recommendation
- URL: http://arxiv.org/abs/2506.01705v2
- Date: Tue, 03 Jun 2025 07:35:59 GMT
- Title: SPOT-Trip: Dual-Preference Driven Out-of-Town Trip Recommendation
- Authors: Yinghui Liu, Hao Miao, Guojiang Shen, Yan Zhao, Xiangjie Kong, Ivan Lee,
- Abstract summary: Out-of-town trip recommendation aims to generate a sequence of Points of Interest for users traveling from their hometowns to previously unvisited regions.<n>The sparsity of out-of-town check-in data presents significant challenges in capturing such user preferences.<n>A novel framework SPOT-Trip is proposed to explicitly learn the dual static-dynamic user preferences.
- Score: 10.65689286167402
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Out-of-town trip recommendation aims to generate a sequence of Points of Interest (POIs) for users traveling from their hometowns to previously unvisited regions based on personalized itineraries, e.g., origin, destination, and trip duration. Modeling the complex user preferences--which often exhibit a two-fold nature of static and dynamic interests--is critical for effective recommendations. However, the sparsity of out-of-town check-in data presents significant challenges in capturing such user preferences. Meanwhile, existing methods often conflate the static and dynamic preferences, resulting in suboptimal performance. In this paper, we for the first time systematically study the problem of out-of-town trip recommendation. A novel framework SPOT-Trip is proposed to explicitly learns the dual static-dynamic user preferences. Specifically, to handle scarce data, we construct a POI attribute knowledge graph to enrich the semantic modeling of users' hometown and out-of-town check-ins, enabling the static preference modeling through attribute relation-aware aggregation. Then, we employ neural ordinary differential equations (ODEs) to capture the continuous evolution of latent dynamic user preferences and innovatively combine a temporal point process to describe the instantaneous probability of each preference behavior. Further, a static-dynamic fusion module is proposed to merge the learned static and dynamic user preferences. Extensive experiments on real data offer insight into the effectiveness of the proposed solutions, showing that SPOT-Trip achieves performance improvement by up to 17.01%.
Related papers
- Multi-agents based User Values Mining for Recommendation [52.26100802380767]
We propose a zero-shot multi-LLM collaborative framework for effective and accurate user value extraction.<n>We apply text summarization techniques to condense item content while preserving essential meaning.<n>To mitigate hallucinations, we introduce two specialized agent roles: evaluators and supervisors.
arXiv Detail & Related papers (2025-05-02T04:01:31Z) - Slow Thinking for Sequential Recommendation [88.46598279655575]
We present a novel slow thinking recommendation model, named STREAM-Rec.<n>Our approach is capable of analyzing historical user behavior, generating a multi-step, deliberative reasoning process, and delivering personalized recommendations.<n>In particular, we focus on two key challenges: (1) identifying the suitable reasoning patterns in recommender systems, and (2) exploring how to effectively stimulate the reasoning capabilities of traditional recommenders.
arXiv Detail & Related papers (2025-04-13T15:53:30Z) - Recommendation and Temptation [3.734925590025741]
We propose a novel recommender design that explicitly models the tension between enrichment and temptation.<n>Our work represents a paradigm shift toward more nuanced and user-centric recommender design.
arXiv Detail & Related papers (2024-12-13T22:44:22Z) - Self-supervised Graph-based Point-of-interest Recommendation [66.58064122520747]
Next Point-of-Interest (POI) recommendation has become a prominent component in location-based e-commerce.
We propose a Self-supervised Graph-enhanced POI Recommender (S2GRec) for next POI recommendation.
In particular, we devise a novel Graph-enhanced Self-attentive layer to incorporate the collaborative signals from both global transition graph and local trajectory graphs.
arXiv Detail & Related papers (2022-10-22T17:29:34Z) - Modeling Dynamic User Preference via Dictionary Learning for Sequential
Recommendation [133.8758914874593]
Capturing the dynamics in user preference is crucial to better predict user future behaviors because user preferences often drift over time.
Many existing recommendation algorithms -- including both shallow and deep ones -- often model such dynamics independently.
This paper considers the problem of embedding a user's sequential behavior into the latent space of user preferences.
arXiv Detail & Related papers (2022-04-02T03:23:46Z) - Modelling of Bi-directional Spatio-Temporal Dependence and Users'
Dynamic Preferences for Missing POI Check-in Identification [38.51964956686177]
We develop a model, named Bi-STDDP, which can integrate bi-directional-temporal dependence and users' dynamic preferences.
Results demonstrate significant improvements of our model compared with state-of-the-art methods.
arXiv Detail & Related papers (2021-12-31T03:54:37Z) - TEA: A Sequential Recommendation Framework via Temporally Evolving
Aggregations [12.626079984394766]
We propose a novel sequential recommendation framework based on dynamic user-item heterogeneous graphs.
We exploit the conditional random field to aggregate the heterogeneous graphs and user behaviors for probability estimation.
We provide scalable and flexible implementations of the proposed framework.
arXiv Detail & Related papers (2021-11-14T15:54:23Z) - Learning Dual Dynamic Representations on Time-Sliced User-Item
Interaction Graphs for Sequential Recommendation [62.30552176649873]
We devise a novel Dynamic Representation Learning model for Sequential Recommendation (DRL-SRe)
To better model the user-item interactions for characterizing the dynamics from both sides, the proposed model builds a global user-item interaction graph for each time slice.
To enable the model to capture fine-grained temporal information, we propose an auxiliary temporal prediction task over consecutive time slices.
arXiv Detail & Related papers (2021-09-24T07:44:27Z) - PEN4Rec: Preference Evolution Networks for Session-based Recommendation [10.37267170480306]
Session-based recommendation aims to predict user the next action based on historical behaviors in an anonymous session.
For better recommendations, it is vital to capture user preferences as well as their dynamics.
We propose a novel Preference Evolution Networks for session-based Recommendation (PEN4Rec) to model preference evolving process.
arXiv Detail & Related papers (2021-06-17T08:18:52Z) - Dynamic Graph Collaborative Filtering [64.87765663208927]
Dynamic recommendation is essential for recommender systems to provide real-time predictions based on sequential data.
Here we propose Dynamic Graph Collaborative Filtering (DGCF), a novel framework leveraging dynamic graphs to capture collaborative and sequential relations.
Our approach achieves higher performance when the dataset contains less action repetition, indicating the effectiveness of integrating dynamic collaborative information.
arXiv Detail & Related papers (2021-01-08T04:16:24Z) - Joint Geographical and Temporal Modeling based on Matrix Factorization
for Point-of-Interest Recommendation [6.346772579930929]
Point-of-Interest (POI) recommendation has become an important task, which learns the users' preferences and mobility patterns to recommend POIs.
Previous studies show that incorporating contextual information such as geographical and temporal influences is necessary to improve POI recommendation.
arXiv Detail & Related papers (2020-01-24T12:25:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.