論文の概要: Performance of a Deep Neural Network at Detecting North Atlantic Right
Whale Upcalls
- arxiv url: http://arxiv.org/abs/2001.09127v2
- Date: Sat, 29 Feb 2020 20:39:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-07 05:33:07.493104
- Title: Performance of a Deep Neural Network at Detecting North Atlantic Right
Whale Upcalls
- Title(参考訳): 北大西洋右クジラの鳴き声検出におけるディープニューラルネットワークの性能
- Authors: Oliver S. Kirsebom, Fabio Frazao, Yvan Simard, Nathalie Roy, Stan
Matwin, Samuel Giard
- Abstract要約: ResNetは、北大西洋の特徴的な右クジラの鳴き声の時間周波数表現を認識するために訓練されている。
我々の研究は、多様な状況下で、深層ニューラルネットワークが北大西洋の右クジラの鳴き声を識別するように訓練できることを実証している。
- 参考スコア(独自算出の注目度): 8.128079378564385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Passive acoustics provides a powerful tool for monitoring the endangered
North Atlantic right whale ($Eubalaena$ $glacialis$), but robust detection
algorithms are needed to handle diverse and variable acoustic conditions and
differences in recording techniques and equipment. Here, we investigate the
potential of deep neural networks for addressing this need. ResNet, an
architecture commonly used for image recognition, is trained to recognize the
time-frequency representation of the characteristic North Atlantic right whale
upcall. The network is trained on several thousand examples recorded at various
locations in the Gulf of St.\ Lawrence in 2018 and 2019, using different
equipment and deployment techniques. Used as a detection algorithm on fifty
30-minute recordings from the years 2015-2017 containing over one thousand
upcalls, the network achieves recalls up to 80%, while maintaining a precision
of 90%. Importantly, the performance of the network improves as more variance
is introduced into the training dataset, whereas the opposite trend is observed
using a conventional linear discriminant analysis approach. Our work
demonstrates that deep neural networks can be trained to identify North
Atlantic right whale upcalls under diverse and variable conditions with a
performance that compares favorably to that of existing algorithms.
- Abstract(参考訳): パッシブアコースティックスは絶滅危惧の北大西洋右ホエール(eubalaena$$$glacialis$)を監視する強力なツールを提供するが、多様で可変な音響条件と記録技術や装置の違いを扱うには、ロバストな検出アルゴリズムが必要である。
本稿では,このニーズに対処するためのディープニューラルネットワークの可能性を検討する。
画像認識に一般的に使用されるアーキテクチャであるresnetは、特徴的な北大西洋右クジラの鳴き声の時間周波数表現を認識するように訓練されている。
このネットワークは、セント湾の様々な場所で記録された数千の例に基づいて訓練されている。
さまざまな機器とデプロイメント技術を使用して、2018年と2019年にLawrenceを名乗った。
2015年から2017年にかけて、1000以上のアップコールを含む50件の30分間の記録を検出アルゴリズムとして使用すると、ネットワークは最大80%のリコールを達成し、90%の精度を維持している。
ネットワークの性能はトレーニングデータセットにより多くの分散を導入するにつれて向上するが、従来の線形判別分析手法では逆の傾向が観察される。
我々の研究は、ディープニューラルネットワークを訓練することで、北大西洋の右クジラの鳴き声を多様で可変な条件下で識別し、既存のアルゴリズムと好適に比較できることを示した。
関連論文リスト
- Histogram Layer Time Delay Neural Networks for Passive Sonar
Classification [58.720142291102135]
時間遅延ニューラルネットワークとヒストグラム層を組み合わせた新しい手法により,特徴学習の改善と水中音響目標分類を実現する。
提案手法はベースラインモデルより優れており,受動的ソナー目標認識のための統計的文脈を取り入れた有効性を示す。
論文 参考訳(メタデータ) (2023-07-25T19:47:26Z) - Diffused Redundancy in Pre-trained Representations [98.55546694886819]
事前訓練された表現で機能がどのようにコード化されているか、より詳しく見ていきます。
与えられた層における学習された表現は拡散冗長性を示す。
我々の発見は、事前訓練されたディープニューラルネットワークによって学習された表現の性質に光を当てた。
論文 参考訳(メタデータ) (2023-05-31T21:00:50Z) - Backdoor Attack Detection in Computer Vision by Applying Matrix
Factorization on the Weights of Deep Networks [6.44397009982949]
本稿では,事前訓練したDNNの重みから特徴を抽出するバックドア検出手法を提案する。
他の検出技術と比較して、これはトレーニングデータを必要としないなど、多くのメリットがある。
提案手法は, 競合するアルゴリズムよりも効率性が高く, より正確であり, 深層学習とAIの安全な適用を確実にするのに役立つ。
論文 参考訳(メタデータ) (2022-12-15T20:20:18Z) - TempNet: Temporal Attention Towards the Detection of Animal Behaviour in
Videos [63.85815474157357]
本稿では,映像中の生物学的行動を検出するための,効率的なコンピュータビジョンと深層学習に基づく手法を提案する。
TempNetはエンコーダブリッジと残留ブロックを使用して、2段階の空間的、そして時間的、エンコーダでモデル性能を維持する。
本研究では,サブルフィッシュ (Anoplopoma fimbria) 幼虫の検出への応用を実証する。
論文 参考訳(メタデータ) (2022-11-17T23:55:12Z) - Space-based gravitational wave signal detection and extraction with deep
neural network [13.176946557548042]
宇宙ベースの重力波検出器(GW)は、現在の地上での観測でほぼ不可能に近い音源からの信号を観測することができる。
本稿では,全宇宙GWソースに対して高精度なGW信号検出・抽出手法を提案する。
論文 参考訳(メタデータ) (2022-07-15T11:48:15Z) - Multivariate Anomaly Detection based on Prediction Intervals Constructed
using Deep Learning [0.0]
提案手法は,よく確立された統計モデルに対するものである。
我々は3つのディープラーニングアーキテクチャ、すなわちカスケードニューラルネットワーク、貯水池コンピューティング、長期記憶のリカレントニューラルネットワークに焦点を当てている。
論文 参考訳(メタデータ) (2021-10-07T12:34:31Z) - Learning Neural Network Subspaces [74.44457651546728]
近年の観測は,ニューラルネットワーク最適化の展望の理解を深めている。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
論文 参考訳(メタデータ) (2021-02-20T23:26:58Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Deep Networks for Direction-of-Arrival Estimation in Low SNR [89.45026632977456]
我々は,真の配列多様体行列の変異チャネルデータから学習した畳み込みニューラルネットワーク(CNN)を導入する。
我々は低SNR体制でCNNを訓練し、すべてのSNRでDoAを予測する。
私たちの堅牢なソリューションは、ワイヤレスアレイセンサーから音響マイクロフォンやソナーまで、いくつかの分野に適用できます。
論文 参考訳(メタデータ) (2020-11-17T12:52:18Z) - Complete parameter inference for GW150914 using deep learning [0.0]
LIGOとVirgoの重力波観測所は過去5年間に多くのエキサイティングな出来事を観測してきた。
検出速度は検出器感度とともに増加するため、データ解析において計算上の課題が増大する。
本研究では,重力波に対する高速確率自由ベイズ推定にディープラーニング手法を適用した。
論文 参考訳(メタデータ) (2020-08-07T18:00:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。