論文の概要: Detection of Thin Boundaries between Different Types of Anomalies in
Outlier Detection using Enhanced Neural Networks
- arxiv url: http://arxiv.org/abs/2001.09209v1
- Date: Fri, 24 Jan 2020 21:52:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-07 04:40:53.209743
- Title: Detection of Thin Boundaries between Different Types of Anomalies in
Outlier Detection using Enhanced Neural Networks
- Title(参考訳): 強化ニューラルネットワークを用いた外乱検出における異なる種類の異常間の薄膜境界の検出
- Authors: Rasoul Kiani, Amin Keshavarzi, and Mahdi Bohlouli
- Abstract要約: 我々は,集合正規異常(Collective Normal Anomaly)と集合点異常(Collective Point Anomaly)と呼ばれる新しい種類の異常を導入する。
ドメインに依存しない基本的な手法は、教師なしデータセットと教師なしデータセットの両方で定義された異常を検出するために導入された。
多層パーセプトロンニューラルネットワークは遺伝的アルゴリズムを用いて拡張され、より高精度に新たに定義された異常を検出する。
- 参考スコア(独自算出の注目度): 3.9715120586766584
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Outlier detection has received special attention in various fields, mainly
for those dealing with machine learning and artificial intelligence. As strong
outliers, anomalies are divided into the point, contextual and collective
outliers. The most important challenges in outlier detection include the thin
boundary between the remote points and natural area, the tendency of new data
and noise to mimic the real data, unlabelled datasets and different definitions
for outliers in different applications. Considering the stated challenges, we
defined new types of anomalies called Collective Normal Anomaly and Collective
Point Anomaly in order to improve a much better detection of the thin boundary
between different types of anomalies. Basic domain-independent methods are
introduced to detect these defined anomalies in both unsupervised and
supervised datasets. The Multi-Layer Perceptron Neural Network is enhanced
using the Genetic Algorithm to detect newly defined anomalies with higher
precision so as to ensure a test error less than that calculated for the
conventional Multi-Layer Perceptron Neural Network. Experimental results on
benchmark datasets indicated reduced error of anomaly detection process in
comparison to baselines.
- Abstract(参考訳): 外乱検出は、主に機械学習や人工知能を扱う様々な分野において特に注目を集めている。
強い外れ値として、異常は点、文脈、集合の外れ値に分けられる。
外れ値検出における最も重要な課題は、リモートポイントと自然領域の境界が薄いこと、実データを模倣する新しいデータやノイズの傾向、ラベルなしデータセット、異なるアプリケーションにおける外れ値の定義などである。
これらの課題を考慮し,異なる種類の異常間の細い境界の検出をより良くするために,集合正規異常と集合点異常と呼ばれる新しい種類の異常を定義した。
基本的なドメイン非依存メソッドは、教師なしデータセットと教師なしデータセットの両方でこれらの定義された異常を検出するために導入された。
遺伝的アルゴリズムを用いて多層パーセプトロンニューラルネットワークを強化し、従来の多層パーセプトロンニューラルネットワークで計算されたテストエラーよりも低い精度で新たに定義された異常を検出する。
ベンチマークによる実験結果から, 異常検出プロセスの誤差が, ベースラインと比較された。
関連論文リスト
- Can I trust my anomaly detection system? A case study based on explainable AI [0.4416503115535552]
本稿では,変分自己エンコーダ生成モデルに基づく異常検出システムのロバスト性について検討する。
目標は、再構成の違いを利用する異常検知器の実際の性能について、異なる視点を得ることです。
論文 参考訳(メタデータ) (2024-07-29T12:39:07Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARCは汎用的なGADアプローチであり、一対一のGADモデルで様々なグラフデータセットの異常を検出することができる。
ARCはコンテキスト内学習を備えており、ターゲットデータセットからデータセット固有のパターンを直接抽出することができる。
各種領域からの複数のベンチマークデータセットに対する大規模な実験は、ARCの優れた異常検出性能、効率、一般化性を示す。
論文 参考訳(メタデータ) (2024-05-27T02:42:33Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
異常ラベルは時系列異常検出において従来の教師付きモデルを妨げる。
自己教師型学習のような様々なSOTA深層学習技術がこの問題に対処するために導入されている。
自己教師型3領域異常検出器(TriAD)を提案する。
論文 参考訳(メタデータ) (2023-11-19T05:37:18Z) - RoSAS: Deep Semi-Supervised Anomaly Detection with
Contamination-Resilient Continuous Supervision [21.393509817509464]
本稿では, テクスト汚染耐性連続監視信号を考案した, 半教師付き異常検出手法を提案する。
当社のアプローチは、AUC-PRにおいて最先端の競合他社を20%-30%上回っている。
論文 参考訳(メタデータ) (2023-07-25T04:04:49Z) - AGAD: Adversarial Generative Anomaly Detection [12.68966318231776]
異常検出は,異常の多様性と大規模異常データ取得の困難さにより異常の欠如に悩まされた。
本稿では,自己コントラストに基づく異常検出パラダイムであるAdversarial Generative Anomaly Detection (AGAD)を提案する。
本手法は,教師付きおよび半教師付き両方の異常検出シナリオに対して擬似異常データを生成する。
論文 参考訳(メタデータ) (2023-04-09T10:40:02Z) - ARISE: Graph Anomaly Detection on Attributed Networks via Substructure
Awareness [70.60721571429784]
サブ構造認識(ARISE)による属性付きネットワーク上の新しいグラフ異常検出フレームワークを提案する。
ARISEは、異常を識別するグラフのサブ構造に焦点を当てている。
実験により、ARISEは最先端の属性付きネットワーク異常検出(ANAD)アルゴリズムと比較して、検出性能が大幅に向上することが示された。
論文 参考訳(メタデータ) (2022-11-28T12:17:40Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Graph Neural Network-Based Anomaly Detection in Multivariate Time Series [17.414474298706416]
我々は,高次元時系列データにおける異常を検出する新しい方法を開発した。
我々のアプローチは、構造学習アプローチとグラフニューラルネットワークを組み合わせている。
本研究では,本手法がベースラインアプローチよりも高精度に異常を検出することを示す。
論文 参考訳(メタデータ) (2021-06-13T09:07:30Z) - Toward Deep Supervised Anomaly Detection: Reinforcement Learning from
Partially Labeled Anomaly Data [150.9270911031327]
本稿では,一部のラベル付き異常事例と大規模ラベルなしデータセットを用いた異常検出の問題点について考察する。
既存の関連手法は、通常、一連の異常にまたがらない限られた異常例にのみ適合するか、ラベルのないデータから教師なしの学習を進めるかのいずれかである。
そこで本研究では,ラベル付きおよびラベルなし両方の異常の検出をエンドツーエンドに最適化する,深層強化学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-15T03:05:39Z) - Deep Weakly-supervised Anomaly Detection [118.55172352231381]
ペアワイズ関係予測ネットワーク(PReNet)は、ペアワイズ関係の特徴と異常スコアを学習する。
PReNetは、学習したペアの異常パターンに適合する見知らぬ異常を検出できる。
12の実世界のデータセットに対する実証的な結果から、PReNetは目に見えない異常や異常を検知する9つの競合する手法を著しく上回っている。
論文 参考訳(メタデータ) (2019-10-30T00:40:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。