Using Simulated Data to Generate Images of Climate Change
- URL: http://arxiv.org/abs/2001.09531v1
- Date: Sun, 26 Jan 2020 22:19:13 GMT
- Title: Using Simulated Data to Generate Images of Climate Change
- Authors: Gautier Cosne, Adrien Juraver, M\'elisande Teng, Victor Schmidt, Vahe
Vardanyan, Alexandra Luccioni and Yoshua Bengio
- Abstract summary: We explore the potential of using images from a simulated 3D environment to improve a domain adaptation task carried out by the MUNIT architecture.
We aim to use the resulting images to raise awareness of the potential future impacts of climate change.
- Score: 108.43373369198765
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Generative adversarial networks (GANs) used in domain adaptation tasks have
the ability to generate images that are both realistic and personalized,
transforming an input image while maintaining its identifiable characteristics.
However, they often require a large quantity of training data to produce
high-quality images in a robust way, which limits their usability in cases when
access to data is limited. In our paper, we explore the potential of using
images from a simulated 3D environment to improve a domain adaptation task
carried out by the MUNIT architecture, aiming to use the resulting images to
raise awareness of the potential future impacts of climate change.
Related papers
- Image-GS: Content-Adaptive Image Representation via 2D Gaussians [55.15950594752051]
We propose Image-GS, a content-adaptive image representation.
Using anisotropic 2D Gaussians as the basis, Image-GS shows high memory efficiency, supports fast random access, and offers a natural level of detail stack.
General efficiency and fidelity of Image-GS are validated against several recent neural image representations and industry-standard texture compressors.
We hope this research offers insights for developing new applications that require adaptive quality and resource control, such as machine perception, asset streaming, and content generation.
arXiv Detail & Related papers (2024-07-02T00:45:21Z) - Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
We introduce a novel framework called bridged transfer, which initially employs synthetic images for fine-tuning a pre-trained model to improve its transferability.
We propose dataset style inversion strategy to improve the stylistic alignment between synthetic and real images.
Our proposed methods are evaluated across 10 different datasets and 5 distinct models, demonstrating consistent improvements.
arXiv Detail & Related papers (2024-03-28T22:25:05Z) - Synthesizing Traffic Datasets using Graph Neural Networks [2.444217495283211]
This paper introduces a novel methodology for bridging this sim-real' gap by creating photorealistic images from 2D traffic simulations and recorded junction footage.
We propose a novel image generation approach, integrating a Conditional Generative Adversarial Network with a Graph Neural Network (GNN) to facilitate the creation of realistic urban traffic images.
arXiv Detail & Related papers (2023-12-08T13:24:19Z) - Attention Mechanism for Contrastive Learning in GAN-based Image-to-Image
Translation [3.90801108629495]
We propose a GAN-based model that is capable of generating high-quality images across different domains.
We leverage Contrastive Learning to train the model in a self-supervised way using image data acquired in the real world using real sensors and simulated images from 3D games.
arXiv Detail & Related papers (2023-02-23T14:23:23Z) - Enjoy Your Editing: Controllable GANs for Image Editing via Latent Space
Navigation [136.53288628437355]
Controllable semantic image editing enables a user to change entire image attributes with few clicks.
Current approaches often suffer from attribute edits that are entangled, global image identity changes, and diminished photo-realism.
We propose quantitative evaluation strategies for measuring controllable editing performance, unlike prior work which primarily focuses on qualitative evaluation.
arXiv Detail & Related papers (2021-02-01T21:38:36Z) - A 3D GAN for Improved Large-pose Facial Recognition [3.791440300377753]
Facial recognition using deep convolutional neural networks relies on the availability of large datasets of face images.
Recent studies have shown that current methods of disentangling pose from identity are inadequate.
In this work we incorporate a 3D morphable model into the generator of a GAN in order to learn a nonlinear texture model from in-the-wild images.
This allows generation of new, synthetic identities, and manipulation of pose, illumination and expression without compromising the identity.
arXiv Detail & Related papers (2020-12-18T22:41:15Z) - Methodology for Building Synthetic Datasets with Virtual Humans [1.5556923898855324]
Large datasets can be used for improved, targeted training of deep neural networks.
In particular, we make use of a 3D morphable face model for the rendering of multiple 2D images across a dataset of 100 synthetic identities.
arXiv Detail & Related papers (2020-06-21T10:29:36Z) - On Leveraging Pretrained GANs for Generation with Limited Data [83.32972353800633]
generative adversarial networks (GANs) can generate highly realistic images, that are often indistinguishable (by humans) from real images.
Most images so generated are not contained in a training dataset, suggesting potential for augmenting training sets with GAN-generated data.
We leverage existing GAN models pretrained on large-scale datasets to introduce additional knowledge, following the concept of transfer learning.
An extensive set of experiments is presented to demonstrate the effectiveness of the proposed techniques on generation with limited data.
arXiv Detail & Related papers (2020-02-26T21:53:36Z) - Fine-grained Image-to-Image Transformation towards Visual Recognition [102.51124181873101]
We aim at transforming an image with a fine-grained category to synthesize new images that preserve the identity of the input image.
We adopt a model based on generative adversarial networks to disentangle the identity related and unrelated factors of an image.
Experiments on the CompCars and Multi-PIE datasets demonstrate that our model preserves the identity of the generated images much better than the state-of-the-art image-to-image transformation models.
arXiv Detail & Related papers (2020-01-12T05:26:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.