論文の概要: DRMIME: Differentiable Mutual Information and Matrix Exponential for
Multi-Resolution Image Registration
- arxiv url: http://arxiv.org/abs/2001.09865v1
- Date: Mon, 27 Jan 2020 15:38:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-06 08:26:17.102448
- Title: DRMIME: Differentiable Mutual Information and Matrix Exponential for
Multi-Resolution Image Registration
- Title(参考訳): DRMIME:マルチ解像度画像登録のための識別可能な相互情報と行列指数
- Authors: Abhishek Nan, Matthew Tennant, Uriel Rubin and Nilanjan Ray
- Abstract要約: 本稿では,新しい教師なし画像登録アルゴリズムを提案する。
エンドツーエンドで識別可能で、マルチモーダルとモノモーダルの両方に使用することができる。
- 参考スコア(独自算出の注目度): 6.59529078336196
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this work, we present a novel unsupervised image registration algorithm.
It is differentiable end-to-end and can be used for both multi-modal and
mono-modal registration. This is done using mutual information (MI) as a
metric. The novelty here is that rather than using traditional ways of
approximating MI, we use a neural estimator called MINE and supplement it with
matrix exponential for transformation matrix computation. This leads to
improved results as compared to the standard algorithms available
out-of-the-box in state-of-the-art image registration toolboxes.
- Abstract(参考訳): 本研究では,新しい教師なし画像登録アルゴリズムを提案する。
エンドツーエンドで識別可能で、マルチモーダルとモノモーダルの両方に使用することができる。
これは相互情報(MI)を計量として行う。
ここでの新規性は、従来のMIの近似法ではなく、MINEと呼ばれる神経推定器を用いて変換行列計算のために行列指数で補うことである。
これにより、最先端の画像登録ツールボックスで使える標準アルゴリズムと比較して、結果が改善される。
関連論文リスト
- Large Language Models for Multimodal Deformable Image Registration [50.91473745610945]
そこで本研究では,様々な医用画像からの深い特徴の整合を図るために,新しい粗いMDIRフレームワークLLM-Morphを提案する。
具体的には、まずCNNエンコーダを用いて、クロスモーダル画像ペアから深い視覚的特徴を抽出し、次に、最初のアダプタを使ってこれらのトークンを調整する。
第3に、トークンのアライメントのために、他の4つのアダプタを使用して、LLM符号化トークンをマルチスケールの視覚特徴に変換し、マルチスケールの変形場を生成し、粗いMDIRタスクを容易にする。
論文 参考訳(メタデータ) (2024-08-20T09:58:30Z) - MAD: Modality Agnostic Distance Measure for Image Registration [14.558286801723293]
マルチモーダル画像登録は多くの医療応用において重要な前処理ステップである。
画像の固有な幾何学をランダムな畳み込みを用いて学習する手法である、Modality Agnostic Distance (MAD)を提案する。
我々は、MADがマルチモーダル画像のアフィニシャルな登録を成功させるだけでなく、従来の計測値よりも大きなキャプチャ範囲を持つことを実証した。
論文 参考訳(メタデータ) (2023-09-06T09:59:58Z) - Improving Masked Autoencoders by Learning Where to Mask [65.89510231743692]
マスケ画像モデリングは視覚データに対する有望な自己教師型学習手法である。
本稿では,Gumbel-Softmax を用いて,対向学習マスク生成装置とマスク誘導画像モデリングプロセスとを相互接続するフレームワーク AutoMAE を提案する。
実験の結果,AutoMAEは,標準の自己監督型ベンチマークや下流タスクに対して,効果的な事前学習モデルを提供することがわかった。
論文 参考訳(メタデータ) (2023-03-12T05:28:55Z) - Multi-scale Transformer Network with Edge-aware Pre-training for
Cross-Modality MR Image Synthesis [52.41439725865149]
クロスモダリティ磁気共鳴(MR)画像合成は、与えられたモダリティから欠落するモダリティを生成するために用いられる。
既存の(教師付き学習)手法は、効果的な合成モデルを訓練するために、多くのペア化されたマルチモーダルデータを必要とすることが多い。
マルチスケールトランスフォーマーネットワーク(MT-Net)を提案する。
論文 参考訳(メタデータ) (2022-12-02T11:40:40Z) - Fast Differentiable Matrix Square Root and Inverse Square Root [65.67315418971688]
微分可能な行列平方根と逆平方根を計算するためのより効率的な2つの変種を提案する。
前方伝搬には, Matrix Taylor Polynomial (MTP) を用いる方法と, Matrix Pad'e Approximants (MPA) を使用する方法がある。
一連の数値実験により、両方の手法がSVDやNSの繰り返しと比較してかなりスピードアップすることが示された。
論文 参考訳(メタデータ) (2022-01-29T10:00:35Z) - Multi-Modal Mutual Information Maximization: A Novel Approach for
Unsupervised Deep Cross-Modal Hashing [73.29587731448345]
我々はCross-Modal Info-Max Hashing (CMIMH)と呼ばれる新しい手法を提案する。
モーダル内およびモーダル間の類似性を両立できる情報表現を学習する。
提案手法は、他の最先端のクロスモーダル検索手法よりも一貫して優れている。
論文 参考訳(メタデータ) (2021-12-13T08:58:03Z) - Deep Group-wise Variational Diffeomorphic Image Registration [3.0022455491411653]
本稿では,複数の画像の同時登録を可能にするために,現在の学習ベース画像登録を拡張することを提案する。
本稿では,複数の画像の粘性測地線平均への登録と,利用可能な画像のいずれかを固定画像として使用可能な登録を両立できる汎用的な数学的枠組みを提案する。
論文 参考訳(メタデータ) (2020-10-01T07:37:28Z) - Ordinary Differential Equation and Complex Matrix Exponential for
Multi-resolution Image Registration [6.59529078336196]
本研究では、実行列指数上で複素行列指数(CME)を用いて変換行列を計算することを強調する。
CMEは理論上より適しており、我々の実験が示すように、事実上より高速な収束を提供する。
提案手法は, 市販の, 人気の高い, 最先端の画像登録ツールボックスに比べて, はるかに優れた登録を行う。
論文 参考訳(メタデータ) (2020-07-27T16:51:25Z) - A Novel Graph-based Multi-modal Fusion Encoder for Neural Machine
Translation [131.33610549540043]
NMTのための新しいグラフベースのマルチモーダル核融合エンコーダを提案する。
まず、統合マルチモーダルグラフを用いて、入力文と画像を表す。
次に、複数のグラフベースのマルチモーダル融合層を積み重ねて、ノード表現を学習するためのセマンティックな相互作用を反復的に実行する。
論文 参考訳(メタデータ) (2020-07-17T04:06:09Z) - MvMM-RegNet: A new image registration framework based on multivariate
mixture model and neural network estimation [14.36896617430302]
生成モデル(MvMM)とニューラルネットワーク推定に基づく新しい画像登録フレームワークを提案する。
外観と解剖情報を一体化した生成モデルを構築し、グループ登録が可能な新規な損失関数を導出する。
マルチモーダル心画像への様々な応用のためのフレームワークの汎用性を強調した。
論文 参考訳(メタデータ) (2020-06-28T11:19:15Z) - CoMIR: Contrastive Multimodal Image Representation for Registration [4.543268895439618]
我々は,CoMIR(Contrastive Multimodal Image Representations)と呼ばれる,共有された高密度画像表現を学習するためのコントラスト符号化を提案する。
CoMIRは、十分に類似した画像構造が欠如しているため、既存の登録方法がしばしば失敗するマルチモーダル画像の登録を可能にする。
論文 参考訳(メタデータ) (2020-06-11T10:51:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。